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Eø��çã®ò� SçÃÃ�Ùù

This report describes a 12-month research acƟvity with the principal objecƟve of conƟnuing de-
velopment, tesƟng and evaluaƟon of a methodology and supporƟng suite of model-based engi-
neering tools for funcƟonal risk assessment and design of cyber resilient systems. Research tasks
were structured to extend themethods and support tools for the decision problemof selecƟng de-
fense and resilience methods in the design and modificaƟon of cyber-physical systems. Research
reported here conƟnues the efforts of previous SERC projects, notably RT-156 and RT-172, and
leverages and contributes to contemporaneous work in RT-191. The project was carried out as
part of an ongoing research partnership between the University of Virginia (UVA) and Virginia
Commonwealth University (VCU). The UVA team led development of methods and tools to model
the consequences of cyber aƩacks on cyber-physical systems, and the VCU team led development
of tools that relate consequences to likely aƩacks.

Outcomes this year include developing a deeper understanding of open source databases of his-
torical cyber aƩacks (e.g., CAPEC, CWE, CERT, and CVE), as well as defining and developing SysML
modeling constructs and a traceability ontology to effecƟvely capture relaƟons between missions
and system, components in the presence of aƩack paƩerns. Key accomplishments for this phase
include: (1) development of the STRAT toolset to support CSRM and dynamic assessment of aƩack
consequence, (2) use of several different NLP/querying techniques to characterize relaƟonships
between aƩack classes in CAPEC, CWE, and CVE; (3) development of the Security Analyst Dash-
board. The dashboard presents an interacƟve view of both the “System” and the “AƩack Space”
and allows for several different levels of automaƟon as well as human/analyst interacƟon. Each
of the tools is published as a binary and/or executable. The Dashboard is designed to work within
CYBOK (though CYBOKmay be used independently of the dashboard); for example, the dashboard
uses the automated recommender system that underpins CYBOK to provide analysts with the ca-
pability to directly query specific entries in CAPEC, CVE, and CWE.
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1 IÄãÙÊ�ç�ã®ÊÄ

This report describes a 12-month research acƟvity with the principal objecƟve of conƟnuing de-
velopment, tesƟng and evaluaƟon of a methodology and supporƟng suite of model-based engi-
neering tools for funcƟonal risk assessment and design of cyber resilient systems. Research tasks
were structured to extend themethods and support tools for the decision problemof selecƟng de-
fense and resilience methods in the design and modificaƟon of cyber-physical systems. Research
reported here conƟnues the efforts of previous SERC projects, notably RT-156 and RT-172, and
leverages and contributes to contemporaneous work in RT-191. The project was carried out as
part of an ongoing research partnership between the University of Virginia (UVA) and Virginia
Commonwealth University (VCU). The UVA team led development of methods and tools to model
the consequences of cyber aƩacks on cyber-physical systems, and the VCU team led development
of tools that relate consequences to likely aƩacks.

1.1 CÊÄã�øã Ê¥ PÙÊ¹��ã

The University of Virginia (UVA) has been leading a research effort in System Aware Cybersecurity
that includes techniques for aƩacking cyber-physical systems, senƟnel based concepts for cyber
resiliency, and tools for the selecƟon of resilient architectures. The previous effort in this series
of research, RT-172, focused on the development and selecƟon of resilience features that sus-
tain operator control of weapon systems and assure the validity of the most criƟcal data elements
required forweapon control. The decision support tool research under RT-172 focused on integrat-
ing historical threat consideraƟons as well as risk consideraƟons into the planning for defenses.
Specifically, research invesƟgated the threat analysis aspects of the integrated risk/threat deci-
sion support process and included the development of new threat analysis methods focused on
mission-aware security. The principal goal was to create and update decision support tools to help
decision-makers understand the relaƟve value of alternaƟve defense measures.

RT-172 made significant progress on developing decision support tools for architectural design of
cyber-aƩack resilience. The analysis andmodelingmethodology takes amission-centric viewpoint,
combining inputs from system experts at the design and user levels uƟlizing Systems-TheoreƟc Ac-
cidentModel and Process (STAMP) to idenƟfy potenƟally hazardous states that a system can enter
and reason about how transiƟoning into those states can be prevented. The SysML Parser is a tool
that connects general system descripƟons with a graph model of the system that can be “virtually
aƩacked” by a cyber analyst using the Security Analyst Dashboard tools. The V1 Parser is a Magic-
Draw plugin that uƟlizes the OpenAPI to automaƟcally extract Internal Block Diagram (IBD), Block
DefiniƟon Diagrams (BDD), and Requirements structures to GraphML. The tool includes a model-
ing methodology that ensures the SysML blocks have a sufficient set of aƩributes for performing
exploit chain queries.

RT-172 developed both themethodology and associated toolset with the explicit intenƟon of gen-
erality and broad applicability. The project included development of a first prototype of a hard-
ware/soŌware emulaƟon weapon system created for tesƟng the decision-support tools. RT-191
focused on enriching and extending this test environment emulaƟng an intelligent muniƟon sys-
tem. The emulaƟon included features inspired by actual weapon systems as well as expanded set
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of situaƟonal awareness subsystems that allowed for exploraƟon of more complex operaƟonal
scenarios and aƩack spaces, including system-of-systems operaƟons and aƩacks. In RT-191, the
toolsets and methodology from RT-156, which include a hierarchical modeling approach through
a War Room exercise, were used to derive mission-level requirements. This work included re-
construcƟng the hierarchical model of the intelligent muniƟons systems including: requirements,
behavior (acƟvity diagrams), and structure, all the while keeping traceability between the lower
levels of the hierarchy and the mission requirements.

1.2 T�Ý»Ý

The principal objecƟves of RT-196 were to (1) complete development, tesƟng and evaluaƟon of a
next-generaƟonmethodology and supporƟng suite of tools for assessing the vulnerability of cyber-
physical systems and (2) to conƟnue the ongoing acƟviƟes to extend the methods and capabiliƟes
for vulnerability assessment to provide support for the decision problem of selecƟng defense and
resiliencemethods in system design andmodificaƟon, as well as support for operaƟonal decisions
associated with resilience and defense. The primary tasks are as follows.

1.2.1 AÙ�«®ã��ãçÙ�½ S�½��ã®ÊÄ M�ã«Ê�Ê½Ê¦ù �Ä� TÊÊ½Ý

The objecƟve in this task was to complete the development of the architectural selecƟonmethod-
ology and tools begun in RT-172, referred to as V1, and develop a new generaƟon, V2. RT-191 was
iniƟated to evaluate the iniƟal version of a usable tool set (V0), with evaluaƟon results completed
July 2018. RT-172 advanced V0 to a more advanced support capability (V1) that was finalized as
part of RT-196. The RT-196 also included adding addiƟonal tool capabiliƟes to address more com-
plex system configuraƟons with enhancements to allow users to significantly increase their pro-
ducƟvity.

1.2.2 SçÖÖÊÙã W�Ù RÊÊÃ A�ã®ò®ã®�Ý

This task centered on providing support for RT-191 war rooming acƟviƟes by parƟcipaƟng in sce-
nario development, War Room Blue and Red live sessions, and consequent development of sys-
tems models. Results suggest that our “War Room” approach yields SysML representaƟons that
both (a) capture mission objecƟves and system behavior while (b) providing a representaƟve sur-
rogate surface for aƩack tree applicaƟon.

1.2.3 S��çÙ®ãù AÄ�½ùÝã D�Ý«�Ê�Ù�

The objecƟve of this task was to develop new concepts and prototype for a Security Analyst Dash-
board to support decisions about where to add senƟnels and other resilience and defensemecha-
nisms. The V2 architectural selecƟon methodology and tools provide an efficient way to evaluate
the threats and vulnerabiliƟes of a given system. However, they do not provide explicit support for
the decision of how to modify the defense and resilience architecture to improve overall system
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resiliency. To address this decision problem, research focused on: development of scoring algo-
rithms that aƩempt to provide the analyst with an understanding of the interacƟons between
consequence (from system requirements modeling) and likelihood (from analysis of historical at-
tacks).

1.2.4 S�Äã®Ä�½ Vç½Ä�Ù��®½®ãù AÝÝ�ÝÝÃ�Äã M�ã«Ê�Ê½Ê¦ù Ι A½¦ÊÙ®ã«ÃÝ

The objecƟve in this task was to develop new concepts for self-securing systems by dynamically
adjusƟng SenƟnel vulnerability assessment algorithms, based on related senƟnel alarms that oc-
cur or other operaƟonal and funcƟonal data. This work leverages themachinery from the Security
Analyst Dashboard also topic modeling and other natural language processing algorithms.

2 B��»¦ÙÊçÄ�

2.1 Cù��Ù S��çÙ®ãù R�Øç®Ù�Ã�ÄãÝ M�ã«Ê�Ê½Ê¦ù (CSRM)

This project builds upon some of the techniques and methods RT-191, which was led by UVA
with the parƟcipaƟon of the SoŌware Engineering InsƟtute (SEI) and the US Army’s Armament
Research Development and Engineering Center (ARDEC). A principal outcome of RT-191 was the
specificaƟon of the Cyber Security Requirements Methodology (CSRM) and tesƟng on an emu-
lated concept-stage weapons system. CSRM is a methodology to develop cyber security require-
ments during the preliminary design phase for physical systems [3]. The methodology addresses
the integraƟon of both defense and resilience soluƟons and security-related soŌware engineering
soluƟons. CSRM consists of six steps:

1. High-level development of funcƟonal and architectural system descripƟons by a systems
engineering (SE) team using tools such as SysML

2. Blue team consequence elicitaƟon and analysis, whose deliverable is a prioriƟzed list of
undesirable funcƟonal outcomes

3. SE team derivaƟon of potenƟal resilience soluƟons based on the results of step 2

4. Red team prioriƟzaƟon of defense, resilience, and soŌware engineering soluƟons

5. SE team refactoring of system descripƟons based on Red team recommendaƟons

6. Blue team response to the refactored system descripƟons.

In RT-191, a hypotheƟcal, concept-stage weapon system, known as Silverfish, was used to demon-
strate theCSRMprocess. Silverfish consistedof a rapidly deployable set of approximately 50 ground-
basedmuniƟon systems, termed obstacles. These obstacles deny a geographic area fromunautho-
rized trespassers through the use of force, if necessary, to support the protecƟon of a strategically
sensiƟve locaƟon. An operator remotely monitors this denied area using a variety of sensors and
visual surveillance. The operator controls the arming, disarming, and firing of the obstacles re-
motely via a wireless communicaƟon network. The final recommendaƟons of the CSRM exercise
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regarding resiliency, in order of priority, involved adding diverse communicaƟon systems, adding
resilient design paƩerns to the situaƟonal awareness components of the system, and adding re-
silient design paƩerns to the system’s weapon control components. These results are used for
comparison with the recommendaƟons of the tools described in SecƟon 4.1.

3 S�½��ã®Ä¦ SùÝã�ÃSÖ��®¥®� Cù��ÙÝ��çÙ®ãùAãã��»P�ãã�ÙÄÝUÝ®Ä¦N�ãçÙ�½ L�Ä-
¦ç�¦� PÙÊ��ÝÝ®Ä¦

In a previous research project, the research team invesƟgates the use of topic modeling [4] on
the Common AƩack PaƩern EnumeraƟon and ClassificaƟon (CAPEC) database of historical cyber-
security aƩacks1 [5]. The results of that research were preliminary and demonstrated that topic
modeling could be used to extract informaƟon from the CAPEC database. In RT-196, we demon-
strated how a natural language processing (NLP) technique called topic modeling could be used
to match entries in CAPEC with a system. This is achieved by esƟmaƟng a topic distribuƟon of the
text in the model of the system and then finding the aƩack paƩern with a similar topic distribu-
Ɵon. Distance between the aƩack topic distribuƟon and the model topic distribuƟon is measured
using the Kullback-Leibler divergence [6]. Thework in this secƟonwas presented at 2018 17th IEEE
InternaƟonal Conference On Trust, Security And Privacy In CompuƟng And CommunicaƟons/12th
IEEE InternaƟonal Conference On Big Data Science And Engineering (TrustCom/BigDataSE) and
published in the proceedings [7].

3.1 B��»¦ÙÊçÄ�

The CAPEC database is composed of 512 paƩerns that represent common aƩacks on soŌware
and computer systems. Each aƩack paƩern has a text descripƟon with common fields including
a summary of the aƩack, aƩack prerequisites, and links to related aƩack paƩerns. CAPEC was
created to provide a publicly accessible repository for historical informaƟon on aƩacks that would
give cybersecurity researchers and professionals the capability to learn from experience.

The development of systems to automaƟcally retrieving aƩack paƩerns from CAPEC has been the
focus of other research projects. Yuan et al. [8] develop a soŌware tool for retrieving aƩack pat-
terns. This method maps CAPEC aƩack paƩerns to MicrosoŌ STRIDE categories but relies on user
input such as knowledge of the aƩacker’s skill level. Kotenko and Doynikova [9] propose a tech-
nique for generaƟng random aƩack sequences uƟlizing the CAPEC database but requires knowl-
edge about the aƩacker. The proposed method outlined in this secƟon is a more general concept
that relies solely on the text provided for each aƩack paƩern in the CAPEC database. However,
the work outlined previously on retrieving aƩack paƩerns from CAPEC and generaƟng sequences
of random aƩacks could be used in conjuncƟon with proposed NLP method for matching aƩack
paƩerns to a system descripƟon.

Topicmodeling has beenuƟlized in several domains and for several applicaƟons. It ismost predom-
inantly used for document clustering and classificaƟon [4], but it has also been used for document

1hƩps://capec.mitre.org/index.html
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retrieval [10], soŌware traceability [11], senƟment analysis [12], and sentence ordering [13]. Topic
modeling has also been applied to cybersecurity problems. Aswani et al. [14] use a topic model to
extract informaƟon about SSH logs with the goal of classifying legiƟmate users from brute-force
aƩackers. Kolini and Janczewski [15] used topic modeling to idenƟfy clusters and topics of naƟonal
cybersecurity strategies. Temporal trends in CVE were analyzed using topic modeling by Neuhaus
and Zimmermann [16].

3.2 TÊÖ®� MÊ��½®Ä¦

The following descripƟon of topic modeling was previously included in RT-172 report [17] but is
reproduced here for convenience.

Topic modeling is a machine learning technique commonly used in NLP that esƟmates latent or
hidden topics from a corpus of documents. One method for describing a document commonly
used in NLP is to count the number of Ɵmes each word appears in the text and store these counts
in a vector. This method is oŌen called “bag-of-words”. Wewill represent the length of this bag-of-
words vector using L. For corpora with a large number of documents and documents containing
a large amount of text, this vector can quickly grow which leads to numerous problems when at-
tempƟng to perform analyƟcs, such as classificaiton or topic modeling. A topic model represents
each document in the corpus as a topic distribuƟon with T topics. The number of topic distribu-
Ɵons is generally chosen so that T << L so that the topic distribuƟons can be used in place of
the bag-of-word vectors when performing analysis.

There are several types of topic models including hierarchical topic models [18], correlated topic
models [19], and supervised topic models [20], but we limit our descripƟon of the method to
the basic latent Dirichlet allocaƟon (LDA) [4]. LDA assumes that each document in a corpus is
represented by a mixture of random topics and that each topic is represented by a distribuƟon
over words. The presence of a word in a document is used instead of the word count. Let v be
a vector of binary variables where vi = 1 indicates that the ith word appears in the document,
and vi = 0 indicates that the ith word does not appear in the document. A parƟcular document
is composed of a sequence of words with length N and is denoted by w = (w1, . . . , wN). The
corpus is composed ofM documents and represented byD = {w1, . . . ,wM}.

The following generaƟve process is assumed for each document in the corpus when using the
basic LDA formulaƟon:

1. Randomly sampleN from a Poisson distribuƟon with rate parameter ξ

2. Randomly sample θ from a Dirichlet distribuƟon with parameter α

3. For each word inN :

(a) Randomly sample a topic zn from a mulƟnomial distribuƟon with parameter θ

(b) Randomly sample a word from a mulƟnomial distribuƟon dependent upon the topic
P (wn|zn, β)

It is assumed that the number of topics T is known and fixed in this process for generaƟng each
document,. The joint probability distribuƟon of the topic mixture θ, the set of topics z, and the set
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of words w given the parameters α and β is given by:

P (θ, z,w|α, β) = P (θ|α)
N∏

n=1

P (zn|θ)P (wn|zn, β). (1)

The marginal distribuƟon for the set of words can be found by integraƟng over θ and summing
over the topics:

P (w|α, β) =
∫

P (θ|α)

(
N∏

n=1

∑
z

P (zn|θ)P (wn|zn, β)

)
dθ. (2)

The marginal distribuƟon of the corpus can be found by mulƟplying the marginal probabiliƟes of
each documents:

P (D|α, β) =
M∑

m=1

[∫
P (θm|α)(

Nm∏
n=1

∑
zm

P (zmn|θm)P (wmn|zmn, β)

)
dθ

]
.

(3)

The key problem for LDA is esƟmaƟng the hidden topic distribuƟon z and the parameter θ given a
document. The posterior for these two variables is given by:

P (z, θ|w, α, β) = P (z,w, θ|α, β)
P (w|α, β)

. (4)

The posterior distribuƟon is intractable for an exact soluƟon but other esƟmaƟon methods, such
as variaƟonal inference [21] and Gibbs sampling [22], can be employed to esƟmate these variables
and parameters.

3.3 M�ã«Ê�Ê½Ê¦ù

This secƟon outlines our proposed methodology for selecƟng aƩack paƩerns that could be used
to aƩack a system using NLP. The proposed methodology aims to find aƩack paƩerns in CAPEC
that are “close” to the system descripƟon in the topic space. The methodology returns a ranked
list of aƩacks and is intended to be used as a suggesƟon for cybersecurity experts when assessing
the vulnerabiliƟes of a system.

The steps of the methodology are as follows:

1. Extract and process the text of the aƩack database.

2. Learn a topic model of the aƩack database.

Report No. SERC-2019-TR-002

6

Date February 22, 2019



3. Extract the text describing the system from a model or other documents relevant to the
system.

4. Create a term-frequency vector from the extracted text of the system using only words that
match those in the aƩack database vocabulary.

5. EsƟmate the topic posterior distribuƟon of the systemusing the aƩack database topicmodel
and the term-frequency vector of the system.

6. Calculate the KL divergence between the topic distribuƟon of the system and the topic dis-
tribuƟon of each aƩack.

7. Rank aƩacks using the KL divergence measure from minimum to maximum.

The proposed methodology is heavily reliant on the text that describes the system. In some cases,
design documents or operaƟons manuals could be used in place of the system descripƟon or in
addiƟon to the system descripƟon. If this documentaƟon is not available, a model of the system
could be constructed. The text can be extracted from this model. In our example, documentaƟon
of the system was not available and the Systems Modeling Language (SysML) [23] was used to
construct a model.

The KL divergence is a common measure for evaluaƟng the similarity of two distribuƟons:

DKL(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
, (5)

whereP andQ are twodiscrete probability distribuƟons. IfP andQmatch exactly, thenDKL(P ||Q) =
0. Other measures of distribuƟon similarity could be used in place of the KL divergence, but this
measure was selected due to its widespread use in informaƟon theory.

3.4 AÖÖ½®��ã®ÊÄ Ê¥ AÖÖÙÊ��«

In this secƟon, we describe our work on the applicaƟon of the proposed methodology to an early
prototype design of Silverfish which has less funcƟonality and capability than the full Silverfish
system. The text used in this example applicaƟonwas extracted froma SysMLmodel of the system.

To the best of our knowledge, there are no methods for selecƟng an aƩack paƩern for a given
system using text describing both the aƩacks and the system. The two methods described earlier
in the paper ( [8] and [9]) require prior knowledge about the skill level of the aƩacker. Therefore,
these methods should not be compared to the proposed method. We limit our analysis to pro-
cessing the text from CAPEC, comparing different approaches to esƟmaƟng the parameters of the
LDA and the number of topics, and tesƟng the proposed methodology.

The first two steps of the proposed methodology extract text from the CAPEC database and esƟ-
mate a topic model. Topic modeling is an unsupervised learning algorithm which makes it difficult
to tune model parameters and validate the model. There are numerous decisions that must be
made when construcƟng a topic model ranging from how to process the data to the type of topic
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model, e.g. LDA or correlated, to the number of topics. There is no standard methodology to ad-
dressing these decisions. Further, due to the unsupervised nature of the problem, metrics for
evaluaƟng the quality of the model are not standardized.

The text data must be extracted and processed before a topic model can be learned. The first step
for processing the CAPEC text is to remove any aƩack paƩerns that do not have a descripƟon.
This reduces the number of aƩack paƩerns from 512 to 500. In its unprocessed form, the CAPEC
database has a vocabulary of over 11,000 terms. For a normal corpus, this would be a reasonable
or even small number of terms. However, the length of each aƩack descripƟon is relaƟvely short
when comparedwith documents usually analyzed inNLP. Further, the unprocessed formof the text
includes punctuaƟon, numbers, and repeated terms due to capitalizaƟon. In an effort reduce the
size of the vocabulary and to only give a more concise representaƟon of the text in the database,
the following common NLP processing steps are performed on the corpus:

1. Remove punctuaƟon

2. Convert all upper case leƩers to lower case

3. Remove numbers

4. Remove stop words

5. Perform stemming

Several words that commonly occur in the English language are not relevant to NLP and can in-
ject noise into the modeling, i.e. “the”, “and”, “a”, “or”, etc. It is common to remove these stop
words before performing NLP. Stemming the terms in a vocabulary is also common pracƟce. For
example, “aƩack” and “aƩacks” are considered separate terms in the raw text, but performing
word stemming reduces them to a single term. Porter’s stemming algorithm [24] was used as the
stemming procedure.

Once these processing steps are performed, the vocabulary is reduced to 4274 unique terms. How-
ever, there are sƟll several terms in the vocabulary that appear only a handful of Ɵmes, therefore,
terms that appear in less than one percent of the documents are removed. This reduces the vo-
cabulary to 1307 terms and concludes our processing procedure. The term frequency is calculated
for each term in the processed corpus and stored in a document-term matrix.

The next step of themethodology is to learn a topic model from the processed CAPEC text. Choos-
ing the number of topics for a topic model can be difficult as there is no “correct” answer due to
the unsupervised nature of the problem. Further, the parameters of the standard LDA can be esƟ-
mated using either variaƟonal esƟmaƟon or Gibbs sampling. We combine these two problems by
evaluaƟng topic models esƟmated using both methods with the number of topics ranging from
2 to 50. Three topic modeling evaluaƟon metrics are used: CaoJuan2009 [25], Arun2010 [26],
and Deveaud2014 [27]. The objecƟve is to find a topic model that minimize the first two metrics
and maximize the third. Figures 1 and 2 display these evaluaƟon metrics for variaƟonal esƟma-
Ɵon and Gibbs sampling, respecƟvely. The topic models using variaƟonal esƟmaƟon improve as
the number of topics is increased. However, the Deveaud2014 metric increases around 5 topics
when using Gibbs sampling and stays relaƟvely constant as the number of topics increases. The
other two metrics improve as the number of topics is increased. This relaƟonship indicates that
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Figure 1: EvaluaƟon metrics for variaƟonal esƟmaƟon.

Figure 2: EvaluaƟon metrics for Gibbs sampling.
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Figure 3: Top 10 words per topic.

Figure 4: Posterior topic distribuƟon for example system.

we can either choose a large number of topics and the variaƟonal method or we can select a small
number of topics and use the Gibbs sampling esƟmaƟon method. In order for topics to be more
interpretable, we decide to the Gibbs sampling procedure to learn a topic model with 5 topics for
esƟmaƟng the parameters of the model.

Gibbs sampling is used to esƟmate a standard LDA topic model for the CAPEC database. In order
to remove the effects of random iniƟalizaƟon of parameters, five models (each with a different
seed) are esƟmated and the model with the maximum posterior likelihood is selected. The top 10
words for each topic are displayed in Figure 3.

The next step is to collect text that describes the system. In this applicaƟon of the methodology,
text was extracted from the SysML model. The text was processed using the same processing
procedure as the CAPEC text. However, removing stop words and filtering based on sparsity are
not necessary because only terms that appear in the CAPEC vocabulary are used for the system
term vector. Term frequencies were calculated for words that are in the CAPEC vocabulary and
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assigned to word vector ws. The posterior distribuƟon of topics for the system zs is esƟmated
using ws and the learned topic model from the CAPEC database. Figure 4 displays the posterior
topic distribuƟon for the system.

Table 1: Top 5 AƩacks. This table contains the CAPEC ID, the distance between the aƩack topic
distribuƟon and the system topic distribuƟon, the Ɵtle of the aƩack, and the summary of the
aƩack as listed in CAPEC.

CAPEC ID Distance Title Summary

619 0.001 Signal Strength Tracking In this aƩack scenario, the aƩacker passively monitors the signal
strength of the target’s cellular RF signal or WiFi RF signal and uses the
strength of the signal (with direcƟonal antennas and/or from mulƟple
listening points at once) to idenƟfy the source locaƟon of the signal.
Obtaining the signal of the target can be accomplished through mulƟ-
ple techniques such as through Cellular Broadcast Message Request or
through the use of IMSI Tracking or WiFi MAC Address Tracking.

615 0.003 Evil Twin Wi-Fi AƩack Adversaries install Wi-Fi equipment that acts as a legiƟmate Wi-Fi net-
work access point. When a device connects to this access point, Wi-Fi
data traffic is intercepted, captured, and analyzed. This also allows the
adversary to act as a “man-in-the-middle” for all communicaƟons.

495 0.007 UDP FragmentaƟon An aƩacker may execute a UDP FragmentaƟon aƩack against a target
server in an aƩempt to consume resources such as bandwidth and CPU.
IP fragmentaƟon occurs when an IP datagram is larger than theMTU of
the route the datagram has to traverse. Typically the aƩacker will use
large UDP packets over 1500 bytes of data which forces fragmentaƟon
as ethernet MTU is 1500 bytes. This aƩack is a variaƟon on a typical
UDP flood but it enables more network bandwidth to be consumed
with fewer packets. AddiƟonally it has the potenƟal to consume server
CPU resources and fill memory buffers associated with the processing
and reassembling of fragmented packets.

623 0.008 Compromising EmanaƟons AƩack Compromising EmanaƟons (CE) are defined as unintenƟonal signals
which an aƩacker may intercept and analyze to disclose the informa-
Ɵon processed by the targeted equipment. Commercial mobile devices
and retransmission devices have displays, buƩons, microchips, and ra-
dios that emit mechanical emissions in the form of sound or vibraƟons.
Capturing these emissions can help an adversary understand what the
device is doing.

603 0.009 Blockage An adversary blocks the delivery of an important system resource caus-
ing the system to fail or stop working.

The distance between the system topic distribuƟon and the topic distribuƟon for each aƩack in the
CAPEC database was measured using the KL Divergence. The five closest aƩacks, in terms of dis-
tance in the topic space, found using this method are displayed in Table 1. The table also includes
the distance between the system topic distribuƟon and the aƩack topic distribuƟon and the sum-
mary of the aƩack as listed in the CAPEC database. The proposed method is difficult to validate
because ranking the best aƩacks is a subjecƟve task. However, the returned results demonstrate
that the selected aƩacks target the communicaƟon subsystem. While the communicaƟon system
is encrypted, the Compromising EmanaƟons AƩack describes an aƩackwhere the signals aremon-
itored. The strength of the signal or the frequency of transmission could be used by an adversary
to gain knowledge about the system. This type of aƩack would not allow the adversary to gain
access to the system but it could be used to degrade the effecƟveness of the system. In a separate
acƟvity, a group of cyber analysts conducted a Red Team acƟvity on the prototype system and
selected similar types of aƩack paƩerns as the proposed NLP method.

The five aƩacks with the greatest distance between the system topic distribuƟon and the aƩack
topic distribuƟon as suggested by the proposed method are displayed Table 2. This offers another
form of validaƟon for the method. The aƩacks that are farthest from the system topic distribuƟon
generally target keywords, browsers, and web applicaƟons. As the system does not have access to
the internet and is essenƟally a closed system, it seems reasonable that these aƩacks should not
be considered or be considered as low-likelihood of occurring.

We would like to point out that this list should be used as suggesƟon of possible aƩacks and not
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Table 2: BoƩom 5 AƩacks. This table contains the CAPEC ID, the distance between the aƩack topic
distribuƟon and the system topic distribuƟon, the Ɵtle of the aƩack, and the summary of the aƩack
as listed in CAPEC.

CAPEC ID Distance Title Summary

199 1.03 XSS Using Alternate Syntax An adversary uses alternate forms of keywords or commands that result
in the same acƟon as the primary form but whichmay not be caught by
filters. For example, many keywords are processed in a case insensiƟve
manner. If the site’s web filtering algorithm does not convert all tags
into a consistent case before the comparison with forbidden keywords
it is possible to bypass filters (e.g., incomplete black lists) by using an
alternate case structure. For example, the “script” tag using the alter-
nate forms of “Script” or “ScRiPt” may bypass filters where “script” is
the only form tested. Other variants using different syntax represen-
taƟons are also possible as well as using polluƟon meta-characters or
enƟƟes that are eventually ignored by the rendering engine. The aƩack
can result in the execuƟon of otherwise prohibited funcƟonality.

244 1.02 XSS TargeƟng URI Placeholders An aƩack of this type exploits the ability of most browsers to interpret
“data”, “javascript” or other URI schemes as client-side executable con-
tent placeholders. This aƩack consists of passing a malicious URI in an
anchor tag HREF aƩribute or any other similar aƩributes in other HTML
tags. SuchmaliciousURI contains, for example, a base64 encodedHTML
content with an embedded cross-site scripƟng payload. The aƩack is
executed when the browser interprets the malicious content i.e., for
example, when the vicƟm clicks on the malicious link.

32 1.01 XSS Through HTTP Query Strings An adversary embeds malicious script code in the parameters of an
HTTP query string and convinces a vicƟm to submit the HTTP request
that contains the query string to a vulnerable web applicaƟon. The web
applicaƟon then procedes to use the values parameters without prop-
erly validaƟon them first and generates the HTML code that will be ex-
ecuted by the vicƟm’s browser.

86 1.00 XSS Through HTTP Headers An adversary exploits web applicaƟons that generate web content,
such as links in a HTML page, based on unvalidated or improperly vali-
dated data submiƩed by other actors. XSS in HTTP Headers aƩacks tar-
get the HTTP headers which are hidden from most users and may not
be validated by web applicaƟons.

63 0.91 Cross-Site ScripƟng (XSS) An adversary embeds malicious scripts in content that will be served
to web browsers. The goal of the aƩack is for the target soŌware,
the client-side browser, to execute the script with the users’ privilege
level. An aƩack of this type exploits a programs’ vulnerabiliƟes that are
brought on by allowing remote hosts to execute code and scripts. Web
browsers, for example, have some simple security controls in place,
but if a remote aƩacker is allowed to execute scripts (through inject-
ing them in to user-generated content like bulleƟn boards) then these
controls may be bypassed. Further, these aƩacks are very difficult for
an end user to detect.

a definiƟve ranking of the most harmful aƩacks. It should be used in conjuncƟon with domain
knowledge when developing a cybersecurity system.

3.4.1 FçãçÙ� WÊÙ»

There are several avenues for possible future work. First, the method is only applied to a single
relaƟvely simple system and to one SysML model of that system. A more rigorous study in the
future should include several types of systems and a combinaƟon of text extracted from SysML
models and exisƟng documentaƟon. Second, improved topic models could lead to a beƩer list
of aƩack paƩerns. While the standard LDA was used in this study, numerous versions of topic
models exist. One limitaƟon of the CAPEC database is the relaƟvely short descripƟon of each at-
tack. Several methods have been proposed for short texts that include using auxiliary texts such
as wikipedia [28, 29]. Domain knowledge of a subject can also be leveraged to improve the per-
formance of topic models [30, 31]. Finally, the method was demonstrated for the CAPEC database
but it could be expanded to CVE, CWE, or any other cybersecurity database with text.
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CSRM Step STRAT Tool Support

1. High level, tool-based, system descripƟon produced by the SE
team, including the basic system architecture and funcƟonal
descripƟon in SysML

Mission and System
SpecificaƟon

2. Blue team operaƟonal risk assessment, whose deliverable is a
prioriƟzed list of undesirable funcƟonal outcomes, and
consequence analysis based on the system descripƟon

Systems-theoreƟc
consequence analysis

3. SE team derivaƟon of potenƟal resilience soluƟons based on the
results of operaƟonal risk assessment

Model-based soluƟon
idenƟficaƟon4. Red team prioriƟzaƟon of defense, resilience, and soŌware

engineering soluƟons

SimulaƟon-based
soluƟon evaluaƟon

5. SE team refactoring of system descripƟons based on Red team
recommendaƟons

6. Blue team response to the refactored system descripƟons

Table 3: CSRM process and associated tool support from STRAT. Overlap represents the steps of
CSRM that the respecƟve component of STRAT supports.

4 TÊÊ½Ý E¥¥ÊÙã

The tools efforts follow two broad themes: (1) general tool support for conducƟng CSRM in secƟon
4.1 and (2) more specific tools for conducƟng cyber analysis in secƟon 4.2.

4.1 SùÝã�ÃÝ-T«�ÊÙ�ã®� R�Ý®½®�Ä�ù AÝÝ�ÝÝÃ�Äã TÊÊ½ (STRAT)

This secƟon describes the tools used to support CSRMand idenƟfy appropriate resiliency soluƟons
based on systems-theoreƟc control and behavior models. The methodology expands on the con-
cepts defined in CSRM that lead to the idenƟficaƟon of potenƟal resiliency-enhancing strategies
for a given system. CSRM idenƟfies potenƟal resiliency soluƟons based on the mission and system
descripƟons, inputs from stakeholders, and the judgment of the Systems Engineering team. The
methodology introduced in this secƟon can be used to augment the CSRM by providing model-
based jusƟficaƟon for the Systems Engineering (SE) team, or the methodology can be used on
its own to idenƟfy and evaluate appropriate resiliency enhancements. The tools and models de-
scribed in this secƟon, the Systems-TheoreƟc Resiliency Assessment Tool (STRAT) is composed of
four main components: mission and system specificaƟon, systems theoreƟc consequence analy-
sis, model-based soluƟon idenƟficaƟon, and soluƟon evaluaƟon. The components of STRAT and
how they support the broader systems engineering methodology of CSRM are shown in Table 3.
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4.1.1 D�ò�½ÊÖÃ�Äã Ê¥ M®ÝÝ®ÊÄ �Ä� SùÝã�Ã SÖ��®¥®��ã®ÊÄÝ

STRAT method shares its iniƟal steps with CSRM. Both the system and the mission it performs are
specified at a high-level along with a, preferably rank-ordered, set of unacceptable outcomes to
that mission. These pieces of informaƟon form the basis of the STAMP-based analysis from which
the system’s control structure and potenƟal loss scenarios are derived. Ideally, themission and sys-
tem descripƟons are generated by consensus in an iteraƟve process between the SE team and the
system owners. However, if the system owners are not available for engagement or if the SE team
represent the system owners, then the SE team can complete the descripƟons independently. At
a minimum, the iniƟal mission descripƟon should describe in natural language:

1. The overall mission objecƟve and any sub-objecƟves,

2. The greater purpose the mission supports,

3. Criteria for mission success and failure,

4. and any constraints on the environment in which the system operates to complete the mis-
sion.

The system descripƟon shall also describe in natural language how the system is intended to com-
plete the mission, any known components within the system, a basic funcƟonal descripƟon of the
system’s operaƟon, and any other known constraints on the system’s operaƟon. Preliminary mis-
sion and systemdescripƟons should be developed by the SE team and the systemowners over two
or three iteraƟons and the length of the descripƟons should not exceed one to two typed pages.
Agreeing upon a concise descripƟon has the dual benefit of scoping analysis to a more manage-
able degree for complex systems as well as prevenƟng confusion about the goals of the mission
and how the system is used to help reach those goals.

Following the development of themission and system descripƟons, if the system owners are avail-
able for engagement, the STRAT method borrows from Step 2 of the CSRM- the Blue Team conse-
quence elicitaƟon meeƟng. The Blue Team meeƟng engages the SE team with the system owners
to elicit a prioriƟzed set of undesirable consequences or outcomes with respect to the use of the
system in themission. The development of the list of undesirable outcomes is based on the agreed
upon mission and system specificaƟons described previously. The SE team is responsible for facil-
itaƟng the discussion and documenƟng the outcomes along with other relevant pieces of infor-
maƟon from the system owners. Such informaƟon could include, but is not limited to, the compo-
nents that would likely need to be aƩacked to produce that outcome and the potenƟal method of
aƩack. The CSRM, for example, idenƟfies an addiƟonal piece of informaƟon- STAMP type- to fur-
ther characterize the undesirable outcome in terms of the control acƟon (or lack thereof) needed
to produce the outcome. All of this informaƟon collected from the systems owners forms the
foundaƟon for the STAMP-based analysis and construcƟon of the system’s control model.

In the event that conducƟng a Blue Team meeƟng as described in the CSRM is not possible, then
the SE team will need to rely on their understanding of the system and mission descripƟon and
personal experƟse. Under these circumstances, the value of having a clear and consistent system
and mission descripƟon becomes evident. If the descripƟons are easily understood, then it be-
comes more likely that a non-user or non-expert will be able to idenƟfy valid, and well-formed,
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undesirable outcomes. Regardless of the team that develops the list of undesirable outcomes, the
raƟonale behind each outcome should be documented to enable any cascading effects in future
analysis to be traceable.

4.1.2 SùÝã�ÃÝ-T«�ÊÙ�ã®� CÊÄÝ�Øç�Ä�� AÄ�½ùÝ®Ý

Following the specificaƟon of the mission, system, and undesirable outcomes, the SE team per-
forms a systems-theoreƟc consequence analysis to define the system’s funcƟonal control struc-
ture, behavior, and potenƟal scenarios that might produce undesirable outcomes. More specifi-
cally, this step of the methodology is based on Leveson’s STAMP model and STPA/STPA-Sec anal-
ysis tools. The STRAT follows the concepts of the STAMP model and performs most of the steps
in the STPA-Sec analysis tool, but the goals of each method differ. STPA-Sec idenƟfies scenarios,
that could be the result of a cyber-aƩack, to focus cybersecurity efforts; however, STRAT uses the
STAMP-based analysis to guide the construcƟon of models that are used to idenƟfy appropriate
locaƟons and types of cyber-resilience strategies [32].

STPA and STPA-Sec begin with the idenƟficaƟon of unacceptable losses in the mission at hand.
STRAT uses the informaƟon collecƟon methods described in secƟon 4.1.1 to perform this same
task. The set of undesirable outcomes generated by the SE team or the system owners are directly
mapped into the unacceptable losses used in the consequence analysis. Unacceptable losses in
STPA-Sec syntax are high-level events that typically imply total mission failure. Consequently, it
may be possible that some of the undesirable outcomes generated in the previous step may be
too specifically defined to be well-formed unacceptable losses. In such cases, there is likely an
implicit higher-level loss event Ɵed to that outcome that should be defined. For example, mulƟple
undesirable outcomes may be able to be categorized as a more general type of unacceptable loss.
It should be noted, however, that the one of the purposes of beginning with the definiƟon of
unacceptable losses is to scope later analysis, and therefore, the set of unacceptable losses should
not be so specific that the problem space becomes too complex.

AŌer the definiƟon of unacceptable losses in the mission, a set of hazardous condiƟons that could
contribute to one of the unacceptable losses are idenƟfied. In fact, some of the more specific
undesirable outcomes from the Blue Team elicitaƟon are likely to describe a hazardous scenario
that could lead to a higher-level loss event. Hazardous condiƟons outline scenarios that could
occur during the operaƟon of the system within the mission that would lead to an unacceptable
loss if they were to occur in combinaƟon with the presence of a worst-case environment. Young
and Leveson illustrate this by describing a nuclear power plant that has an unacceptable loss of not
producing power to the grid. A hazardous scenario for the power plant would be the shutdown
of the reactor, however, the associated unacceptable loss only occurs if there are no auxiliary
generators or if the reactor is shutdown longer than the endurance of the auxiliary generators [32].
Following the idenƟficaƟon of hazardous scenarios, the basic control structure of the system is
defined. The development of the control structure is based on the controller, actuator, controlled
process, and sensor feedback loop seen in Figure 5.

The system’s control structure emerges as these loops are stacked on top of one another, in paral-
lel, or merged together, similar to the control structure of a ficƟonal missile defense system shown

Report No. SERC-2019-TR-002

15

Date February 22, 2019



Controller
Inadequate Control
Algorithm

(Flaws in creaƟon, Process
changes, Incorrect modificaƟon
or adaptaƟon)

Process Model
inconsistent, incomplete,
or incorrect

Actuator
Inadequate
OperaƟon

Controlled Process
Component failures
Changes over Ɵme

Sensor
Inadequate
OperaƟon

Controller
2

Inappropriate,
ineffecƟve or

missing
control
acƟon

Delayed
operaƟon

Incorrect or no
informaƟon
provided
Measurement
inaccuracies
Feedback delays

Inadequate or
missing feedback
Feedback delays

Control input or external informaƟon
wrong or missing

UnidenƟfied or
out-of-range
disturbance

ConflicƟng
control acƟons

Process input missing
or wrong

Process output
contributes to hazard

Figure 5: The generic control loop structure that is used to formulate the control model. (adapted
from [1]).

in Figure 6. The combinaƟon of these loops creates a hierarchy of controllers and controlled pro-
cesses that begins to describe the technological and organizaƟonal mechanisms that the system
uses to operate within its mission domain. More specifically, the hierarchical control structure
defines how commands and control acƟons propagate from the higher-level controllers to lower-
level controllers or controlled processes and how those lower-level enƟƟes provide feedback to
their higher-level controllers [1]. IdenƟfying how the system accomplishes these tasks is the first
step to understanding how unintended or uncontrolled system behavior can lead to unacceptable
losses.

Defining the control structure allows for the enumeraƟon of the control acƟons available to each
controller within the hierarchy. Since the STAMP causalitymodel asserts that hazardous condiƟons
are the result of performing control acƟons improperly, the enumeraƟon of control acƟons allows
the SE team to idenƟfy the scenarios under which improperly implemented control acƟons lead
to hazardous condiƟons, and thus, potenƟal unacceptable losses. Improper control acƟons can be
categorized into four types of implementaƟon:

1. Providing the control acƟon leads to a hazardous condiƟon

2. Not providing the control acƟon leads to a hazard

3. Providing the control acƟon too early, too late, or in the incorrect order leads to a hazard

4. Stopping a control acƟon too soon or performing a control acƟon too long leads to a hazard.

By creaƟng a table of the possible control acƟons and how each type of improper implementaƟon
of those control acƟons can lead to hazardous condiƟons, the SE team begins to idenƟfy poten-
Ɵal areas of concern within the control structure through the process of eliminaƟon. Some control
acƟons will not have scenarios that create hazardous condiƟons for all of the improper implemen-
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Figure 6: A “stacked” control structure of a ficƟonal missile defense system (From [2]).
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taƟon types because of the nature of the control acƟon. Thus, those cases can be ignored in future
analysis, thereby reducing the problem space. Furthermore, the SE team will be able to take note
of any control acƟons that can lead to the same hazardous condiƟon for mulƟple improper imple-
mentaƟon types. These control acƟons can be flagged as areas to invesƟgate more thoroughly in
later analysis.

The final step in STPA and STPA-Sec involves the construcƟon of causal scenarios that describe
why an improper control acƟon was taken. The idenƟficaƟon of these scenarios facilitates an un-
derstanding of the impact cyber events have on the mission- something with which tradiƟonal se-
curity methodologies may struggle. Furthermore, idenƟfying the potenƟal mechanisms through
which adverse outcomes can occur helps moƟvate the choice of appropriate resilient design pat-
terns later on.

The main arƟfacts of the STAMP-based consequence analysis are the definiƟon of the system’s
funcƟonal control structure and the documentaƟon of the relevant system losses, hazards, haz-
ardous control acƟons, and causal scenarios. These arƟfacts aid the SE team in understanding
the manner in which vulnerabiliƟes can propagate through the system in addiƟon to forming the
foundaƟon for the construcƟon of the system and behavior models.

4.1.3 MÊ��½-��Ý�� SÊ½çã®ÊÄ I��Äã®¥®��ã®ÊÄ

4.1.3.1 T«� SùÝã�Ã MÊ��½

While the STAMP-based consequence analysis facilitates understanding of the system’s control
structure and idenƟfies potenƟal pathways for vulnerabiliƟes that lead to adverse outcomes, it
does not produce an analyzable model. Consequently, it becomes advantageous to represent the
system’s control structure, unacceptable outcomes, and other STAMP-based analysis informaƟon
in graphical form. This representaƟon allows for the visualizaƟon of the control acƟons, the resul-
tant changes to the system, and the emergence ofmission-level consequences from those acƟons.
Furthermore, the graphical formulaƟon allows for the beginnings of a quanƟficaƟon of the qual-
itaƟve subject maƩer obtained in the mission and system specificaƟons and the consequence
analysis.

The graphical representaƟon of the system, its control structure, and the consequence analysis
necessitates a special definiƟon of its graphical objects. This graph, known as the specificaƟon
graph, or S-graph [33], shares similariƟes to the definiƟon of a mulƟdigraph or quiver [34]. How-
ever, the S-graph’s verƟces and edges are supersets of dissimilar sets of verƟces and edges. The
need for differing types of verƟces and edges arises from the representaƟon of the elements in
the control loop shown in Figure 5, and therefore STRAT modifies the general noƟon of S-graph
into what we call the Sim-graph. The Sim-graph models actors in the system by having its ver-
Ɵces represent an enƟty from the generic control loop, a combinaƟon of those enƟƟes, a physical
state, or a funcƟon that represents an outcome. It follows that the edges in the graph represent
the acƟons performed by or resulƟng from the actors.

Following these concepts, the Sim-graph is composed of a combinaƟon of six types of verƟces:
outcome verƟces, state verƟces, actuator verƟces, sensor verƟces, controller verƟces, and meta
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verƟces. The outcome verƟces describe the presence or absence of certain condiƟons from the
consequence analysis, such as the presence of a hazardous condiƟon or the occurrence of an unac-
ceptable loss. State verƟces are broadly defined as the set of variables or controlled processes that
are not also controlling a lower-level process, such as vehicle’s locaƟon, speed, etc. As the name
implies, actuator verƟces represent an actuator in the system’s control structure that receives
input from a controller and acts upon a controlled process. Likewise, sensor verƟces represent
a sensor in the system’s control structure that monitors a controlled process or state and sends
feedback to a controller. The Sim-graph’s controller verƟces represent a controller in the system’s
hierarchical control structure. Due to the control hierarchy, a controller vertex will both receive
inputs from a higher-level actuator and send control acƟons to a lower-level actuator, and vice-
versa for its corresponding sensor verƟces, unless the vertex is the highest-level controller in the
system. Finally, meta verƟces can be used to represent a combinaƟon of controllers, actuators,
sensors, or controlled processes. This allows for the possibility that an enƟty in the hierarchical
control structure shares the responsibiliƟes of two or more of the parts of the generic control
loop. An example of such shared responsibiliƟes is illustrated in Figure 6.

The edges of the Sim-graph are also of different types. These types include acƟon edges, feedback
edges, and condiƟonal edges. AcƟon edges represent the control acƟons or dynamics through
which a higher-level vertex influences a lower-level vertex. For example, a controller vertex may
havemulƟple acƟon edges from itself to the subsequent actuator vertex that represent the control
acƟons available to that controller in the system’s control structure. Feedback edges represent
data or informaƟon that is propagated from a lower-level vertex to a higher-level vertex, such as
the feedback from a sensor to its higher-level controller. Finally, the condiƟonal edges represent
the inputs to an outcome vertex.

Using these definiƟons to the varying types of verƟces and edges, amathemaƟcal definiƟon of the
Sim-graph is as follows. The specificaƟon graph, S, is a 4-tuple similar to a mulƟdigraph, or quiver:

S := (V,E, p, t)

where V is the superset of nodes in the graph, E is the superset of edges, p : E → V assigns
each edge to its parent vertex, and t : E → V assigns each edge’s target vertex. Furthermore, the
superset V is defined:

V ⊇ O,X,A,D,C,M

where O is the set of outcome verƟces, X is the set of state verƟces, A is the set of actuator
verƟces, D is the set of sensor verƟces, C is the set of controller verƟces, and M is the set of
meta verƟces. Likewise, the superset E is defined:

E ⊇ B, Y, Z

whereB is the set of acƟon edges, Y is the set of feedback edges, and Z is the set of condiƟonal
edges.

The structure of the Sim-graph shares striking similariƟes to a quiver- such as the potenƟal to
have mulƟple edges between two nodes, each with its own idenƟty. However, the combinaƟon
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of disparate sets of verƟces and edges, each represenƟng a system component or behavior that
may governed by incompaƟble mathemaƟcs, presents significant challenges to performing math-
emaƟcal operaƟons on the Sim-graph. Consequently, the Sim-graph is currently used to simply
represent a visualizaƟon of the system and help formulate the behavior model in Simulink. The
mathemaƟcal definiƟon of the Sim-graph, however, does provide a starƟng point for future efforts
intending to automate analysis of the system model.

4.1.3.2 T«� S®Ãç½®Ä» B�«�ò®ÊÙ MÊ��½ �Ä� S®Ãç½�ã®ÊÄ

Due to the Sim-graph’s potenƟal limitaƟons with respect to automated analysis techniques, it
becomes necessary to use simulaƟon for idenƟfying appropriate resiliency strategies. Simulink
provides the necessary tools for simulaƟng the structure and behavior described in the Sim-graph
without the difficulƟes associatedwith themathemaƟcs of the graphical representaƟon. Simulink’s
and Stateflow’s combinatorial and sequenƟal decision logic tools and other model elements en-
ables the abstracƟon of some of the Sim-graph’s complexity into a more easily executable form.
More specifically, through a series of source blocks, mathemaƟcal operators, state machine dia-
grams, and flowcharts, this step of the methodology constructs a simulaƟon of the system’s in-
tended behavior. The simulaƟon of normal behavior is then used to determine where and how
adverse behavior can be introduced, thus leading to the idenƟficaƟon of appropriate resiliency
strategies and their locaƟon within the system.

As previouslymenƟoned, one of the difficulƟes associatedwith the definiƟon of the S- graph is the
diversity of what the verƟces and edges represent. The Simulink model allows for these different
types of verƟces and edges to take on actual implementaƟons of what they represent. For exam-
ple, one parƟcular controller in the system may follow a decision model that is describable in a
truth table, whereas another controller operates based on a set of differenƟal equaƟons. Simulink
enables both to be encoded to the desired level of granularity in the behavior model.

It should be noted that each behavior model and simulaƟon is heavily dependent on the system in
quesƟon and its associated mission. However, by using the Sim-graph as a starƟng point, each of
the types of verƟces and edges generallymap to similarmodel elementswithin Simulink regardless
of the system being modeled. Table 4 presents the types of Sim-graph elements mapped to a
Simulink model element that should sufficiently describe its behavior for most applicaƟons.

By using Simulink source blocks and state machine diagrams to represent the state verƟces, the
simulaƟon takes on a scenario-based format. This allows the SE team to generate condiƟons that
produce the intended behavior of the systemwithin the mission. Once the system’s normal, or in-
tended, behavior is represented by the simulaƟon, then the SE team can explore ways to generate
unintended or undesirable system behavior.

The SE team can take two approaches to producing undesirable behavior: by creaƟng starƟng
condiƟons based on the hazards defined in the consequence analysis, or by finding ways to gen-
erate the causal scenarios outlined in the consequence analysis. For each approach, the SE team
documents the nature of any undesirable behavior that is generated, how it was generated, a list
of potenƟal miƟgaƟon strategies for that behavior, and the locaƟons within the system for im-
plemenƟng those strategies. The potenƟal miƟgaƟon strategies are based on the resilient design
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Type Corresponding Simulink Model Element

Outcome Vertex Truth table
State Vertex Source block and/or State machine diagram
Actuator Vertex State machine diagram
Sensor Vertex State machine diagram and/or math operator blocks
Controller Vertex State machine diagram or truth table
“Meta” Vertex State machine diagram
Type of Sim-graph Edge

AcƟon Edge Embedded in truth table or state machine diagram
Feedback Edge Inputs/outputs to and from sensor vertex model element
CondiƟonal Edge Inputs/outputs to outcome vertex truth tables

Table 4: A mapping of Sim-graph elements to a Simulink model element that should sufficiently
represent its behavior in most applicaƟons.

paƩerns described by Jones and Horowitz for System-Aware cybersecurity [35].

The first approach defines a set of starƟng condiƟons that are either immediately hazardous, or
likely to become hazardous. As an example, imagine that the model describes an autonomous
vehicle. In this case, some of the state verƟces would describe any obstacles in the vehicles path
along with the vehicle’s current speed and heading. Following the scenario-based construcƟon
of the model, these variables would be programmable to be immediately hazardous at the start
of the simulaƟon, i.e. an obstacle directly in the path of the vehicle’s current heading and within
the vehicle’s safe-maneuvering perimeter. In this scenario, the system’s behavior should account
for this hazardous condiƟon and aƩempt to miƟgate the danger. If the system is unable to ade-
quately handle such inputs, then the SE knows to invesƟgate the introducƟon of some safeguards
or resiliency measures to miƟgate such situaƟons. The selecƟon of potenƟal resiliency strategies
and their locaƟon depends on the nature of the hazardous condiƟon and varies from system to
system.

The second approach to generate undesirable behavior in the simulaƟon aims to generate haz-
ards from within the model, rather than starƟng with hazardous condiƟons. More specifically, the
iniƟal starƟng condiƟons are such that the system should be expected to behave in its intended
manner, however, the SE team changes parameters, noise levels, or other model elements with
the intent of producing hazardous or unacceptable outcomes. Following the autonomous vehicle
example described above, the intent would be to produce unsafe behavior from “normal” condi-
Ɵons. One potenƟal method for doing so could involve introducing addiƟonal noise or bias into
the system’s obstacle detecƟon sensors. In a non-resilient system, this could easily result in the
failure to detect and avoid an obstacle, thus creaƟng a hazardous scenario and a potenƟal unac-
ceptable loss. Where these changes intended to produce unintended behavior occur within the
system and what is being changed define the possible resilient design paƩerns that would be ap-
propriate. For instance, in the above example, if increased noise in the obstacle detecƟon sensors
leads to undesirable behavior, then an appropriate resiliency strategy would be to include a noise
monitoring algorithm and redundant backup sensors.
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Both of these approaches should be used to describe all of the hazardous condiƟons and causal
scenarios from the consequence analysis as appropriate- it is possible that not all the items from
the consequence analysis are applicable to both approaches. Once all of the consequence analy-
sis items are exhausted, the SE team should have a list of potenƟal resilience strategies and the
locaƟons within the system for their implementaƟon. At this point, the SE team should use their
discreƟon to remove any strategies that address scenarios that might be unrealisƟc or are oth-
erwise infeasible. Furthermore, it is possible that the list may contain some duplicate strategies;
these items in the list should be merged and the number of duplicate entries recorded as this can
be used as a measure of priority in strategy evaluaƟon.

4.1.4 Eò�½ç�ã®Ä¦ R�Ý®½®�Ä�ù SÊ½çã®ÊÄÝ

The choice of which resiliency soluƟons to implement is amulƟ-criteria decision problemprimarily
involving the cost of the soluƟon, the impact of the soluƟon on the adverse outcome(s) to be mit-
igated, and the likelihood of the adverse outcome(s) occurring. How each of these factors, among
themany others not menƟoned, is dependent on the preferences and worldviews of the decision-
makers. Furthermore, the cost of a resiliency soluƟon, which includes the monetary value, the
complexity of design, and the ease of integraƟon into the system, varies greatly depending on
the applicaƟon. Thus, analysis of the cost factor is outside the scope of this thesis. However, the
simulaƟon and STAMP-based consequence analysis enable an evaluaƟon of the adverse outcomes
to be addressed by the soluƟon as well as the soluƟon’s impact on those adverse outcomes. By
taking advantage of the similarity of these two factors to the tradiƟonal definiƟon of risk, the set
of resiliency soluƟons can be prioriƟzed into “risk” categories. These categorized soluƟons form a
cost-agnosƟc recommendaƟon of which resiliency measures to pursue. For every entry in the list
of soluƟons idenƟfied based on analysis of the simulaƟon, there is an associated list of adverse
outcomes addressed by a parƟcular soluƟon. These adverse outcomes and the impact of those
soluƟons form the basis of the “risk” measure based on the tradiƟonal definiƟon [36]:

risk = impact× likelihood

For the purposes of this applicaƟon, impact is a measure of the number of adverse outcomes that
a soluƟon intends to address, the priority of those outcomes in the consequence analysis, and the
effect of adding that soluƟon on the operaƟon of the system. This soluƟon’s effect on the system
can be determined by adding in a representaƟon of the soluƟon to the simulaƟon and compar-
ing the results to the unaltered system if the nature of the soluƟon allows. Otherwise, the effect
must be judged qualitaƟvely. Likelihood is a measure of the ease of achieving adverse outcomes
in the simulaƟon. More specifically, the number of changes to the simulaƟon needed to achieve
an adverse outcome and the severity of those changes. It should be noted that this definiƟon of
likelihood does not incorporate a probabilisƟc assessment of the ability of potenƟal adversaries
to create those changes in the system as such is out of the scope of this thesis. However, methods
for creaƟng such an assessment could easily augment the methods described here.

Given the nature of the factors that make up the impact and likelihood measures, quanƟtaƟve
metrics defining each dimension of the “risk” score are difficult, if not impossible to idenƟfy.
Therefore, impact and likelihood are categorized into rankings of low, medium, and high. Thus,
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Figure 7: The risk matrix prioriƟzaƟon framework for resiliency soluƟons.

the risk matrix framework can be readily applied to this applicaƟon and resiliency soluƟons are
categorized into low, medium, and high prioriƟes for implementaƟon [36].

AŌer generaƟng the set of recommended resiliency soluƟons in the risk matrix framework, all or
a subset of the resiliency soluƟons can be applied to the system and the analysis iterated on the
“new” updated system. A strength of the methodology presented in this secƟon is the ability to
refactor in resiliency soluƟons at mulƟple different steps. SoluƟons could be refactored into the
iniƟal system and mission descripƟons or simply incorporated into the simulaƟon model. Either
approach offers greater confidence that all appropriate resiliency soluƟons are considered for a
parƟcular system.

Results of STRAT are shown in SecƟon 5 for the Silverfish use case.

4.2 CYBOK �Ä� S��çÙ®ãù AÄ�½ùÝã D�Ý«�Ê�Ù�

This secƟon describes the development of two tools. The first, Cyber Body of Knowledge (CY-
BOK) is an informaƟon retrieval tool for systems engineers, security analysts, and requirements
engineers. This tool discovers relevant aƩack informaƟon at the earliest possible stage of systems
development using models of systems. The second, is called Security Analysts Dashboard, which
is a combined user interface for CYBOK and graph transformaƟons of SysML models. This tool
presents the system topology, aƩack vector informaƟon, and the requirements diagrams defining
the specificaƟon of the mission—therefore, allowing a common language between systems engi-
neerings and security analysis within the MissionAware framework. Both these tools stem from
past years research [37–39].

4.2.1 RÊ½� ó®ã«®Ä ã«� M®ÝÝ®ÊÄAó�Ù� FÙ�Ã�óÊÙ»

MissionAware first defines the possible mission scenarios and then it idenƟfies both the possible
mission hazards but also the type of threat space that is potenƟally going to be associatedwith the
system architecture (Figure 8). The War Room is the fundamental concept in MissionAware. The
War Room produces a body of informaƟon that drives system hazard analysis and SysMLmodeling
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Figure 8: Where Security Analyst Dashboard and CYBOK Fits into MissionAware

efforts—that capture the mission requirements, admissible behaviors of the system, architectural
features of the system, idenƟficaƟon of hazards, idenƟficaƟon of criƟcal assets, and assessment
of high level threats. The SysML modeling acƟvity takes the output of the War Room and encodes
mission criƟcal informaƟon into workflow models to understand the potenƟal threat space asso-
ciated with the mission. This is the stage in which the tools; that is the dashboard and CYBOK, are
used to help the system analysts and security engineers gauge the relevant vulnerabiliƟes (and
associated aƩacks) of the system and threat actors.

Through the Security Analyst Dashboard, the analyst extracts vulnerability informaƟon that is po-
tenƟally applicable to the mission and the system architecture. CYBOK’s informaƟon retrieval pro-
cess does the preliminary steps to this by using the system model to idenƟfy relevant aƩack pat-
terns, weaknesses, and vulnerabiliƟes. As described in the architecture secƟon (SecƟon 4.2.2.2),
the results are evaluated at various levels of granularity, and in mulƟple composiƟons, to assess
whether relaƟonships between model elements align with common interfaces between aƩacks,
which should give insight intowhether an aƩack chain is consequenƟal to a system and itsmission.
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4.2.2 CYBOK

To secure systems from emerging threats, systems engineers and security analysts alike need to in-
tegrate an aƩacker’s view of vulnerabiliƟes into their design, development, and analysis process—
as early as possible. This is a basic tenant in MissionAware cyber security: a system’s cyber secu-
rity approach requires taking the aƩacker’s perspecƟve and relate these aƩacks to possible conse-
quences to best understand how to strategically defend a system. To date, this aƩacker perspecƟve
acƟvity has been a largely a manual process conducted by subject maƩer experts who examine
a system and idenƟfy possible vulnerabiliƟes. Moreover, these “red team assessments” tend to
occur at later stages in the design and implementaƟon lifecycle—where security modificaƟons are
more costly to implement and overall less effecƟve. This does liƩle to help the designer in trying
to establish operaƟonal assurance early on in the system’s development phase, and ulƟmately
makes it more difficult for the security analyst later on.

Specifically, CYBOK is a tool that takes as input a graph systemmodel, and uses it to idenƟfy known
aƩack paƩerns, weaknesses, and vulnerabiliƟes pertaining to the system by taking advantage
of exisƟng knowledge bases. CYBOK uƟlizes open databases, catalogs, and repositories used fre-
quently in the threat sharing community. The aim of CYBOK is the creaƟon of a tool which curates
cyber security domain knowledge, for example, CAPEC, CWE, CVE, to provide usable informaƟon
to both the security analysts and system engineers.

The general contribuƟons of CYBOK are the following:

1. CYBOK is amulƟ-view search engine on how to relate threat informaƟon in a systemsmodel
context. It views the diverse set of security data repositories (CAPEC, CWE, CVE, CPE, etc.) as
greater than the sum of their individual parts. Uncovering the synergisƟc relaƟons in these
diverse set of repositories and casƟng the informaƟon into systemmodel perspecƟve is the
innovaƟve aspect of CYBOK.

2. CYBOK generates a set of queries from a graphmodel of the system, creates aggregate sum-
maries of the search results, and creates a direct associaƟon between components and at-
tacks for further analysis.

3. CYBOK’s informaƟon retrieval is driven by the system perspecƟve—a SysML model, mission
requirements, and operaƟonal assurance needs. InformaƟon from the SysML model of the
system is disƟlled into a graph schema, encoded in the standard GraphML format. This is
done automaƟcally through a separate tool, graphml_export.

4. The results obtained by CYBOK can be easily examined, iteraƟvely modified and decom-
posed and disseminated among the designers throughout the system lifecycle process.

4.2.2.1 D�ã�Ý�ãÝ

At present, we integrate three databases; that is, CAPEC, CWE, CVE, into the CYBOK search engine.
Each of which serve different roles in cybersecurity analysis. Specifically, CAPEC, CWE, and CVE
inform about aƩacks, weaknesses, and vulnerabiliƟes, respecƟvely. Therefore, each provides a
different perspecƟve on the security posture of a system. In addiƟon to these diverse focal points
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Table 5: Key features of each of the aƩack vector datasets.

Cybersecurity
Resource

Focus RepresentaƟon Size
Known
RelaƟonships

Data Format

CAPEC
Pseudo-ontology of
AƩack PaƩerns

Hierarchical
Graph

527 Links to CWE & CVE
Human readable text,
common technical words

CWE
Pseudo-ontology of
Weaknesses and
VulnerabiliƟes

Hierarchical
Graph

806 Links to CAPEC & CVE
Human readable text,
common technical words

CVE

Repository where
vendors may
announce
vulnerabiliƟes
found in their
soŌware

Instance-based 113,098

Vendors using CPE
may use the CPE Name
for the affected soŌware
version(s); Links to CWE

Brief human readable
descripƟons, with addiƟonal
info such as CVSS scores

CPE

Provide universal
idenƟfiers for
soŌware plaƞorm
(single or mulƟple
versions), as requested
by Vendors

Instance-based 177,432 Used by CVE

Specially formaƩed;
See the CPE specificaƟon
for details; Uses
plaƞorm-specific names

Exploit-DB
Code repository
for PoC cyber-aƩacks

Organized by
Target Plaƞorm

40,843 N/A
Program code; some
human readable text

in the cybersecurity domain, instances of these datasets have direct relaƟonships to one another
and oŌen relate to the same concepts from different viewpoints (Table 5). In addiƟon to CAPEC,
CWE, and CVE, we also list CPE and Exploit-DB.

CAPEC, is a pseudo-ontological hierarchy of aƩacks. It describes these aƩacks based on techniques
used to accomplish them, as well as with respect to the goal of the aƩack (such as collecƟng infor-
maƟon or manipulaƟng a state). There are over 500 aƩack paƩerns contained in it, described in
natural language, with content ranging from very concise descripƟons to aƩack execuƟon flows to
detecƟon and miƟgaƟon strategies. A deficiency of this collecƟon, beyond its incomplete entries,
is that it rests at a high level; even low-level aƩack paƩerns are rarely specific about applicable
languages or plaƞorms. However, numerous aƩack paƩerns refer to weaknesses in CWE that they
target, and few refer to CVE instances of plaƞorm vulnerable to such aƩacks.

CWE weaknesses are organized according to mulƟple views, such as where in development the
fault arises, or by abstracƟons of the soŌware behaviors. Like CAPEC, it is pseudo-ontological,
providing a high level understanding of each of the concepts leading to vulnerability. It is Ɵghtly
related to CVE, which describes specific plaƞorms that have vulnerabiliƟes. CVE is a repository
where vendors may report the presence and status of an exploitable vulnerability in an affected
plaƞorm.DescripƟons are short and donot always state the applicable aƩack. These instancesmay
also contain CVSS scores (a widely accepted scoring system for vulnerabiliƟes) and references to
CWE. Finally, each CVE instance possesses a list of all CPE idenƟfiers for affected versions of the
plaƞorm.

CPE is, instead, a database of specific plaƞorms which provides a standard naming convenƟon for
those plaƞorms to assist in vulnerability assessment, and which is used by CVE. At present this can
be inferred frommatches to CVE instances, but could be further integrated in the future, possibly
giving an alternate route to modeling where CPEs are included in the model where available. CVE
provides real instances of weaknesses from CWE becoming vulnerabiliƟes, providing a plaƞorm-

Report No. SERC-2019-TR-002

26

Date February 22, 2019



Figure 9: IllustraƟon of the perspecƟve each dataset has on the problem of cybersecurity.

specific perspecƟve on how weaknesses occur. Even though Exploit-DB is not well connected to
these other datasets, we include it because it is related to CAPEC in much the same way as CVE
is to CWE—it provides real instances of aƩacks against specific plaƞorms. Figure 9 illustrates the
perspecƟves each of these databases has and how they are related.

Via the web, CAPEC, CWE, and, CVE can be searched on their respecƟve websites using simple
text-based queries, however this is inefficient for complex systems. In this context we need to be
able to perform numerous searches on each component and interacƟon modeled in our system.
Since no single one of these provides a complete picture on the system itself, the faults leading
to vulnerability, and the aƩacks that can leverage such faults, it was deemed necessary to include
each of these datasets in order to accomplish such a holisƟc perspecƟve. We developed a search
engine that incorporates all three of these datasets, and takes advantage of the interconnected-
ness they provide, in order to allow for efficiently idenƟfying the threats to a target system.

4.2.2.2 AÙ�«®ã��ãçÙ� �Ä� IÃÖ½�Ã�Äã�ã®ÊÄ

CYBOK is implemented with a top-level search handler that takes incoming queries and search pa-
rameters and feeds them into two lower-level search processes, the index handler and the TaxaS-
core handler. The index handler performs a text-based search with the opƟon of scoring instances
with TF-IDF weighƟng, a well-established scoring method in the natural language processing liter-
ature. The TaxaScore handler processes parameters for how taxonomic scoring is to be performed
and takes results from the text-based search and scores the ancestors and descendants of CAPEC
and CWE instances to flesh out the families of threats associated with the matched instances.

This search process is wrapped in a command-line interface through which the Security Analyst
Dashboard communicates with the CYBOK search engine. Through the command-line interface,
inputs in the form of single queries, GraphML models, and parameter seƫngs may be processed
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and searches may be performed, outpuƫng relevant threat informaƟon to the provided input.
The command-line interface also provides a mechanism through which aƩack surface and exploit
chain analysis canbeperformed,with these results being output inGraphMLand to command line,
respecƟvely. The architecture that accomplishes all the above funcƟons is depicted in Figure 10.

The implementaƟonal aspects of the CYBOK architecture are as follows:

1. Command-line interface for execuƟngCYBOK funcƟons,which canbeuseddirectly or through
the Security Analyst Dashboard.

2. Build and update process—a process that can be executed at command-line which down-
loads CAPEC, CWE, ans CVE from the web, processes the XML documents, and builds the
necessary search index and taxonomies to be used by the CYBOK search process.

3. A text-based search engine with parameters for text-based weighƟng and what sources to
search and/or report.

4. A graph-based search engine with numerous parameters controlling scoring of ancestors
and descendants of matches to CAPEC and CWE instances, used to map a match of a threat
to its more general and specific variaƟons.

5. Search commands at command-line accepƟng either a single query or a GraphML model
which can be used to run the text-based, and opƟonally graph-based, search processes,
outpuƫng results to CSV and GraphML.

6. Graph-relatedmethods for processing GraphMLmodels, aƩack surface analysis, and exploit
chain analysis.

Together these features comprise a customizable search engine which can be used by the Security
Analyst Dashboard and the security analyst to perform model-based threat assessment. In the
following paragraphs we briefly describe the architecture of each of these components.

Command-line interface. CYBOK is operated via a command-line interface which manages var-
ious parameters for what the input will be and how the search will be done. It can be run on
individual queries using the -search flag, or on a model using the -input flag. In either of these
instances, their are addiƟonal flags for enabling and fine tuning the use of taxonomic scoring.
There is also a flag, called -target, for finding possible exploit chains. Also, from the command
line, the flag -update can be used to download CAPEC, CWE, and CVE form their sources, extract
the data from these, and build the search index and taxonomies.

Search Handler. The search handler performs top-level logic of the CYBOK engine, handling
the parameters of the underlying index and TaxaScore Handlers and controlling the flow of data
between them when performing searches. The key value of this component is that it separates
the logic defining text-based searches and that of taxonomic scoring, while also controlling the
high-level search logic determining what sources are to be searched and reported, and whether
results of text-based searches are to be passed into TaxaScore or not. It ensures that data output
from CYBOK is consistent in either search case, with or without taxonomic scoring.

Whoosh/Index Handler. The index handler implements the core funcƟonality underlying CY-
BOK’s text-based searches. The text-based search process is implemented with the open-source
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Figure 10: Architecture of CYBOK.

python library Whoosh, which handles indexing and searching of documents. The basic premise
of a text-based search is that you find documents that share matching terms with the input query,
in this case a system descripƟon, and you score them according to how well they match. The in-
dex handler manages the locaƟon of the Whoosh index to be searched, lookups this index, and
generally records how text-based searches are to be performed. Namely, it allows for the user to
select whether to use TF-IDF weighƟng or not, which is useful for determining the role taxonomic
scoring has on the overall score produced by CYBOK. By controlling the text-based searches in-
dependently of taxonomic scoring, the index handler allows us to modify the text-based search
module without interfering with downstream processes.

TaxaScore Handler. TaxaScore is a novel scoring process targeted at taxonomic datasets such as
CAPEC and CWE. These datasets have the property that ancestors of an instance, its parent, par-
ent’s parent, and so on, describemore general forms of the threat concept, whereas their children
represent more specific variaƟons of the same concept. AccounƟng for this property, the key idea
behind taxonomic scoring is that if we know with some certainty that an instance is relevant to
our search, we can infer that so too are its generalizaƟons and possible more specific forms. Thus,
TaxaScore implements a scoring mechanism where the user can define the weight contribuƟon
that matches what their ancestors and their descendants should have when considering the value
of a threat family with respect to a query or system descripƟon.

TaxaScore applies weights in three ways (Figure 11). First, a matched instance receives a score
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Figure 11: Diagram of TaxaScore scoring breakdown for a match with score t. (a) Shows the score
an ancestor receives from the match, (b) shoes the score a matched instance receives, and (c)
shows what score each of the children will receive.

equal to the weight of the matched, t, scaled by a constantm. Each ancestor of a match receives a
score of the iniƟal weight t scaled by a constant a. Lastly, a score of t Ɵmes d is equally and recur-
sively subdivided among children. AŌer scoring all matched instances of a taxonomy, an instance’s
score is the sum of scores it received from ancestors, descendants, and from being matched di-
rectly.

In this way, TaxaScore uses the semanƟc understanding of the CAPEC and CWE graphs to extract
out the broader context in which aƩack and weakness entries reside, informing the analyst of the
full nature of matched threat families. As opposed to returning disparate instances of CAPEC and
CWE, disconnected from the branches they are part of, TaxaScore ensures that each generaliza-
Ɵon of a matched threat concept is represented in the results of a search. The TaxaScore Handler
is in charge of processing parameters for how taxonomic scoring is to be done and performing
taxonomic scoring on CAPEC and CWE instances. In the current build, TaxaScore is available from
command line in a separate branch or out code repository, but is not yet integrated into the Se-
curity Analyst Dashboard.

4.2.2.3 GÙ�Ö« Ã�ã«Ê�Ý

CYBOK contains a handful of methods for handling the GraphML file that stores the systemmodel,
and for assessing threats against that model. Two key parts of this are the methods involved in
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compuƟng the aƩack surface of themodel and the potenƟal exploit chains throughout the system
topology.

AƩack Surface Analysis. The aƩack surface of a system is comprised of those pieces of hard-
ware and soŌware which can can serve as entry point for an aƩacker, or in other words, what
is accessible from the outside either physically or virtually. By incorporaƟng the “Entry Points”
aƩribute into the model, the user can tell CYBOK which parts of the model they consider to be
accessible, and CYBOK will idenƟfy which of these, if any, have possible aƩacks, weaknesses, and
vulnerabiliƟes to consider. By using the -input flag from command-line and inpuƫng a model,
CYBOK automaƟcally will perform searches over all aƩributes, and will then construct the aƩack
surface in GraphML from the model and those “Entry Points” aƩributes which returned results,
outpuƫng this GraphML file alongside the search results.

Exploit Chain Analysis. Exploit chains are possible paths through a system that can be aƩacked
in sequence in order to go reach a target subsystem. CYBOKprovides a tool that aƩempts to predict
possible exploit chains by finding all possible paths through the system from its aƩack surface to a
user-selected target node, where each node and edge on the path results in possible threats from
a search in CYBOK of its aƩributes. When performing a search with the -input flag, exploit chains
can addiƟonally be provided by using the -target flag and providing the name of a component in
the system. These two graph-based processes may give valuable insight to the analyst about how
the systemmay be aƩacked, according to how the model has been defined and the threats which
have been idenƟfied.

In summary, these components give CYBOK the capability to perform model-based threat assess-
ment by matching threats from CAPEC, CWE, and CVE to user-provided descripƟons contained in
a model or in a single query. The numerous parameters available for fine-tuning TaxaScore allow
the analyst to control how much weight to give to family members of matched threats, and the
aƩack surface and exploit chain analyses allow for the predicƟon of possible paths that can be
taken by an aƩacker to disrupt the system, thereby informing on possible miƟgaƟons that need
to be made.

4.2.2.4 UÝ�¦�

CYBOK consƟtutes the core engine of the Security Analyst Dashboard, being in charge of idenƟ-
fying relevant threats to a system model. The search process done by CYBOK is a mulƟple step
process that involves a text-based and a graph-based search. In Figure 12, we show the process
and which paths are followed when doing a basic search (-search, in green), a model search
(-input, in orange), and a model search with the exploit chain analysis (-target, in red). The
-input and -target flags are addiƟve with respect to the basic search and model search pro-
cesses, respecƟvely. This diagram shows how either a single query or mulƟple queries taken from
a model are processed by CYBOK to report relevant threats, and opƟonally construct the aƩack
surface and exploit chains of an input model.

In its most basic form (using the -search flag), a text-based search is done using the Whoosh
library. OpƟonally, TF-IDF weighƟng can be used at this step to report the similarity of returned
documents to the query by using the -use_tfidf flag. Following the text-based search, a tax-
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Figure 12: Process diagram of CYBOK. Green doƩed path denotes basic search process (-search
flag). Orange dashed path indicates the addiƟonal aƩack surface analysis that occurs when doing
a search of a model (-input flag). Red path indicates the exploit chain analysis that occurs when
the -target flag is included in a model search.

onomic search can be done by seƫng the -use_taxa flag to true. In this case, TaxaScore takes
the related weaknesses to any matched CVEs, as well as matched CAPEC and CWE instances, and
scores the ancestors and descendants of these instances to addiƟonally report the more general
and specific forms of matched threats. There are addiƟonal flags determining the weights applied
to this scoring process for configuring TaxaScore. The results of this process can then be output in
a CSV format where each row presents a matched instance, its score, relaƟonships, and contents.

When performing a model search with the -input flag, CYBOK accepts a GraphML file storing
the model as input. It iterates over nodes and edges, performing a search on each text aƩribute
found. This behaves according to the same process as the basic search, but outputs a CSV where
rows indicate which system component/edge and aƩribute produced each result. AddiƟonally,
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the model search outputs a GraphML file with the aƩack surface, computed from “Entry Points”
aƩributes which matched threats in the databases. If the -target flag is included with the name
of a component in the model, the aƩack surface and the obtained search results will be used to
determine all paths in the system from entry points to the target component for which threats
were found on each node and edge.

4.2.3 S��çÙ®ãù AÄ�½ùÝãÝ D�Ý«�Ê�Ù�

The SysML model produced by the War Room exercise describes the system in both a graphical,
relaƟonship-basedmanner, as well as each of its components and interacƟons in natural language.
Since a goal ofMissionAware is to determine the relevant threats to this systemmodel, it presents
a need formodel-based threat assessment at this stage. To accomplish this, we have developed the
Security Analyst Dashboard in order tomediate the relaƟonship between themodel and the threat
assessment process. The dashboard consists of a robust UI with a number of tools for visualizing
and ediƟng the model (outside of SysML), as well as CYBOK, the search engine underlying the
threat assessment process. With CYBOK to idenƟfy the threats associated to the model and the
dashboard to assist in visualizing these results with respect to the model, the Security Analyst
Dashboard is capable of informing the analyst about the threats facing the system and informs
where miƟgaƟve acƟons might be necessary.

There are a number of important features implemented in the Security Analyst Dashboard which
help it to performmodel-based threat assessment and inform the analyst on the security posture
of the system. These are:

1. System Topology View. A view which allows the analyst to examine and modify the sys-
tem model, facilitaƟng assessment of the model, and which can be used alongside threat
assessment results to examine possible exploit chains through the system topology.

2. System SpecificaƟon View. A hierarchical visualizaƟon of the mission requirements spec-
ificaƟon which can be used alongside threat assessment results to trace violaƟon of mission
requirements.

3. AƩack Vector VisualizaƟon. A tool for visualizing and filtering results of the threat assess-
ment in three disƟnct forms, (1) a graph view illustraƟng each threat entry and its relaƟon-
shipswith other threats as a node and edges, (2) a list-tree view giving summary informaƟon
about each entry and allowing to delve into its interconnected instances, and (3) a tabulated
“bucket” view showing aƩributes and contents of each entry which allows the analyst to se-
lect important results of the threat assessment into a container which can be exported to
CSV.

Together, these features give the Security Analyst Dashboard the mechanisms needed to allow an
analyst to explore the systemmodel and the threats associated with it, as determined through the
two-part search process done by CYBOK (Figure 13).

The results produced by CYBOK via the basic and model-based search are used by the Security
Analyst Dashboard to provide the analyst with the relevant threat informaƟon and possible aƩack
paths that the system faces according to the descripƟons put into the model.
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Figure 13: A screenshot of the Securing Analyst Dashboard, showing a system topology with pro-
jected aƩack surfaces and exploit chains, the AƩack Vector graph view, and the bucket. Each fea-
ture of which will be menƟoned later.

4.2.3.1 SùÝã�Ã TÊÖÊ½Ê¦ù MÊ��½ V®�ó

The system topology model describes the design of the model under analysis (Figure 14). The
model includes the individual components used, aƩributes that help describe their funcƟon, and
edges that describe how they interact with the other components of the design. Specifically, the
dashboard looks for the Entry Point,Device,OperaƟng System, SoŌware, and Firmware aƩributes.

Occasionally, the analyst maywant tomakeminormodificaƟons to their designs to quickly see the
effects of changing certain components without having to constantly switch between programs.
To address this issue, a simple model editor is included (Figure 15). This model editor allows the
changing of an components name, aƩributes, and edges. OncemodificaƟons have beenmade, the
analyst may redo the aƩack vector analysis facilitated by cybok. Once the analyst finds a design
they are happy with, they have the opƟon to export the model back into a graphml file for use
elsewhere.

AddiƟonally, the topologymodel view includes a feature to view aƩack surfaces and exploit chains.
The aƩack surfaces show the entry points in which an aƩacker may exploit to affect the system.
The aƩack chains show paths from entry points to a specific component showing through what
paths an aƩacker may violate a component.

This view will enable the analyst to quickly determine the security state of the design and locate
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Figure 14: A screenshot of a system topology with projected aƩack surfaces displayed. The model
was created in SysML and exported to GraphML using graphml_export, a plugin for MagicDraw.

areaswhere defenses or resilience techniques could be appliedwithout requiring the invesƟgaƟon
of every individual aƩack vector.

4.2.3.2 SùÝã�Ã SÖ��®¥®��ã®ÊÄ V®�ó

The System SpecificaƟonsModel View provides a view from theMissionAware perspecƟve, show-
ing unacceptable losses, potenƟal hazards during operaƟon, and safety constraints. The require-
ments define overall operaƟon, control acƟons, and necessary funcƟonality. A custom hierarchical
layout manager divides the provided specificaƟons in three different groups:

1. Mission level requirements describe the overall operaƟon of the design.
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Figure 15: Screenshot of themodel editor for a specific component. Showing the component name
and the associated aƩributes that describe it.

Figure 16: Screenshot of the system specificaƟons view.

2. FuncƟonal requirements describe the funcƟons the design needs to perform.

3. Structural requirements is comprised of elements used in the system topology, jusƟfying
their use by what funcƟon they serve.

The specificaƟons view uses the aƩributes type, which can be one of the valuesMission, FuncƟon,
or Structure, and text which describes the requirement. The type aƩribute is used by the layout
manager to determine what group to place it. The text aƩribute is used by the overlay renderer
to display the descripƟon of the requirement when the analyst mouses over the node.
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Figure 17: Screenshot of the two aƩack vector visualizaƟon methods, the leŌ showing the graph
view, and the right showing the tree view.

The traceability between levels help the analyst do a what if analysis on the effects of a system
element violaƟons from the perspecƟve of the specificaƟons of the system; that is, by seeing if a
system element is violated what higher-level requirements could also be violated.

4.2.3.3 Aãã��» V��ãÊÙ V®Ýç�½®þ�ã®ÊÄ

AƩack vector visualizaƟon is an important tool that enables the analyst to easily navigate the ex-
pansive jungle of aƩack vectors that could potenƟally compromise a component of the system
topology. To accomplish this, the analyst has a choice of two different visualizaƟon methods.

1. Graph View. A graphical representaƟon of the aƩack vector space by showing both intra-
related and inter-related connecƟons between elements. The aƩack vectors are displayed
where the CAPECs, CWEs, and CVEs are shown using red, blue, and yellow verƟces respec-
Ɵvely and the vertex size relates to the amount of connecƟons associated. Analysts can
interact with the view by moving each vertex around to help with visibility and by changing
the perspecƟve. By default, CVEs are hidden to help reduce the number of verƟces shown
without sacrificing important informaƟon. Shown on the leŌ side of Figure 17.

2. Tree View. A structured tree representaƟon of the aƩack vector space by showing the
parent verƟces as top level nodes that can be expanded to show the related children. This
view uses the same color scheme as the graph view to maintain the consistency between
views. Shown on the right side of Figure 17.

Both visualizaƟon methods include funcƟonality that allows the analyst to select, delete, or open
a web page with more informaƟon on a selected aƩack vector.

Another tool available to the analyst is the bucket (Figure 18). The bucket is a collecƟon of at-
tack vectors the analyst selected that they deem important to be further invesƟgated or report
to stakeholders. The collecƟon is represented as a table where each row shows the aƩack id, de-
scripƟon, and what components the aƩack vector potenƟally violates. AddiƟonally, the contents
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Figure 18: Screenshot of the bucket.

of the bucket can be exported to a CSV file as a method of reporƟng the analysis to stakeholders
or the contents of a CSV can be imported to populate the bucket. The CSV file includes the aƩack
id, name, descripƟon, and the violated components. In the case of the graph and tree view, the
filter bar also has the opƟon of showing only the contents of the bucket.

Each of the visualizaƟon methods listed above also include filtering funcƟonality. The aƩack vec-
tors visible can be filtered based on the aƩack id, name, descripƟon, and by what components
they violate. This allows the analyst to further narrow the visible aƩack vectors to what’s relevant
to the design.

4.2.4 IÃÖ½�Ã�Äã�ã®ÊÄ

The current implementaƟon of CYBOK is wriƩen in Python 3.6. XML documents are parsed us-
ing BeauƟfulSoup4. The text-based search index is implemented using the open-source library
Whoosh. For handling GraphML files, NetworkX is used. The main version of the code also uses
matplotlib and pygraphviz for visualizaƟon of the system topology and exploit chains.

The current implementaƟon of the Security Analyst Dashboard is wriƩen using Java 8. The main
user interface is created using Java’s standard Swing library. The GraphML parsing is accomplished
using the standard XML parsing libraries and rendered using then open-source library Graph-
Stream. Interfacing with CYBOK is done by creaƟng a python subprocess which allows operaƟon
much like how it would be called as if from a command prompt.

4.2.5 SçÃÃ�Ùù

In summary, the Security Analyst Dashboard in conjuncƟon with CYBOK provide tools in which
both systems engineers and security analyst can assess a designs security state during the iniƟal
design process from the perspecƟve of the aƩacker. The analyst can use the potenƟal threats as
idenƟfied by the aƩack vector threat assessment completed by CYBOK and displayed using the
aƩack vector visualizaƟon tools alongside the unified system topology and specificaƟons views,
allowing the analyst to make informed defense and miƟgaƟon choices to protect the system.
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5 AÖÖ½®��ã®ÊÄ ãÊ S®½ò�Ù¥®Ý«

5.1 D�Ý�Ù®Öã®ÊÄ Ê¥ SùÝã�Ã

CSRM [3] along with the STRAT tools is applied to a case study to test for efficacy of the new tools
on a hypotheƟcal new system. This system, known as Silverfish, is a theoreƟcal weapon system
deemed to be sufficient in terms of realisƟcally represenƟng a weapon system that could be used
by the Army to perform a parƟcular mission.

The system is defined as follows. The Silverfish system performs an area denial mission to aid
the protecƟon of a strategically sensiƟve locaƟon. More specifically, Silverfish deploys a set of
50 ground-based weapon systems, known as obstacles, that can engage unauthorized persons or
ground vehicles within the denied area. The denied areameasures up to approximately .16 square
miles in size, with each obstacle capable of protecƟng a 300 foot by 300 foot area. A set of surveil-
lance sensors including staƟc infrared and video cameras and target characterizaƟon sensors, such
as acousƟc and seismic sensors, provide situaƟonal awareness by monitoring the area for persons
and vehicles. An unmanned aerial vehicle also provides surveillance and earlywarning informaƟon
bymonitoring the periphery of the denied area. The Silverfish operator controls the obstacles and
situaƟonal awareness sensors remotely from a nearby vehicle that can bemaneuvered to give the
operator “eyes-on” monitoring over porƟons of the denied area. The operator has control over
the obstacles’ armed or disarmed states and fire capabiliƟes. He or she uses the situaƟonal aware-
ness informaƟon available to determine target idenƟty and the appropriate obstacle with which
to engage the target. A wireless network relays the operator’s commands from the control sta-
Ɵon to the obstacles. Furthermore, the operator has the ability to communicate with a command
and control center to receive orders and addiƟonal situaƟonal awareness informaƟon. The system
operates according to the following assumpƟons:

• Purpose: Deter and prevent, when and where necessary, via the use of rapidly deployable
obstacles, adversarial tracked vehicles or individuals from trespassing into geographic areas
that are close to strategically sensiƟve locaƟons.

• Prohibited Area: 100 acres of open field space. At maximum speed a vehicle would take
about 3 minutes to cross the prohibited area.

• Obstacle Deployment: About 50 obstacles are available to be distributed over the 100 acre
protected area (each obstacle is designed to protect a 300x300 foot area). Each contains
six (6) short-range sub-obstacles, each covering a 60-degree porƟon of a circular area to be
protected.

• OperaƟon: The operator, located in a vehicle that is operated close to the prohibited area
( 150 meters away), remotely controls individual obstacles and their sub- muniƟons, based
upon sensor-based and operator visual surveillance of the prohibited area.

• Prohibited Area Surveillance: The operator is supported by obstacle-based acousƟc and
seismic sensors that can detect and disƟnguish between vehicles and people, redundant
infrared sensors that can detect and track the movement of people and vehicles, and real-
ƟmeVideo/IR derived early warning informaƟon regarding people and vehicles approaching
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the prohibited area provided by a UAVmanaged by the operator. The UAV is used to provide
warning informaƟon.

• Obstacle design features: The obstacle-based sensors provide regular operator situaƟon
awareness reports when they detect a trespasser, reports on their locaƟon, their on-off
status, and their remaining baƩery life. The obstacle confirms the acceptance of commands
and the actual firing events.

• Infrared sensor configuraƟon: A single pole-mounted IR sensor is assumed to be capable of
providing surveillance of the enƟre protected area. A second sensor is provided for redun-
dancy, and can be used to provide surveillance of areas that the single sensor is not able to
observe.

• Requirements for Avoiding Errors: Concerns exist regarding acƟvaƟng sub-obstacles in cases
where non-adversarial vehicles or people, by chance, enter the prohibited area. Concerns
also exist about failing to fire muniƟons when an adversary is approaching a strategically
sensiƟve locaƟon via the prohibited area. The operator, when possible, can use visual ob-
servaƟons to increase confidence regarding fire control.

• Operator FuncƟons: The operator can set the obstacles into either on or off modes and
can cause individual or designated groups of obstacles/sub-muniƟons to detonate when in
on mode. Obstacles can be commanded to self-destroy designated criƟcal informaƟon in
order to prevent adversaries from collecƟng such informaƟon for their own purposes. The
operator also can launch a quad-copter drone (UAV) to provide video/IR based earlywarning
informaƟon regarding potenƟal trespassers of the protected area.

• CommunicaƟons Systems: The communicaƟon system includes digital interfaces that sup-
port formaƩed data transfers between the operator’s system, the UAV subsystem, the indi-
vidual obstacles, the IR subsystem, and the C2 Center.

• Operator Control StaƟon: The operator is provided with a vehicle-mounted computer(s)
subsystem that provides situaƟon awareness informaƟon including individual obstacle sta-
tus, and sensor-based situaƟon awareness informaƟon. The subsystemalso provides computer-
based entry and corresponding system feedback for control inputs from the operator.

• Command Center Controls: The C2 center digitally provides system control informaƟon for
the operator (determines obstacle system on/off periods, provides warning of periods of
higher likelihood of aƩack, provides forecasts of possible approach direcƟon to the prohib-
ited area, enables operaƟon with/without UAV support, etc.).

A high-level, concept of operaƟons representaƟon of Silverfish is presented in Figure 19, using
SysML. More details about the hardware and soŌware design can be found in [3].
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Figure 19: A Concept of OperaƟons representaƟon of Silverfish in SysML.

5.2 AÖÖ½®��ã®ÊÄ Ê¥ STRAT

This secƟon details an applicaƟon of the approach described in SecƟon 4.1 on the hypotheƟcal
US Army weapon system analyzed for the CSRM, known as Silverfish. Results are then compared
with the recommendaƟons of the CSRM to assess the compaƟbility of the methodology with ex-
isƟng techniques. The methodology presented in this secƟon uses the same mission and system
descripƟons and Blue Team-defined unacceptable consequences as the CSRM to allow compari-
son of recommendaƟons. As stated in SecƟon 4.1, the tools used in this report do not necessarily
require that this informaƟon be collected in the same way as the CSRM; however, it should be ac-
knowledged that engaging the system owners increases the veracity of the collected informaƟon.

5.2.1 M®ÝÝ®ÊÄ �Ä� SùÝã�Ã SÖ��®¥®��ã®ÊÄ

The Silverfish system was iniƟally developed to be a testbed for the applicaƟon of the CSRM. Al-
though it is a hypotheƟcal system, the US Army Armament Research, Development, and Engi-
neering Center (ARDEC) determined that the system is both representaƟve of a system that could
potenƟally be used by the Army and is suitable for the demonstraƟon of cybersecurity techniques.
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The assembled Blue Team, composed of members of the ARDEC, and the SE team developed the
iniƟal Silverfish mission and system descripƟons through a series of iteraƟons before agreeing
upon the final descripƟon below [3].

The Silverfish system performs an area denial mission to aid the protecƟon of a strategically sen-
siƟve locaƟon. More specifically, Silverfish deploys a set of 50 ground-based weapon systems,
known as obstacles, that can engage unauthorized persons or vehicles within the denied area.
The denied area measures up to approximately .16 square miles in size, with each obstacle capa-
ble of protecƟng a 300 foot by 300 foot area. A set of surveillance sensors including staƟc infrared
and video cameras and target characterizaƟon sensors, such as acousƟc and seismic sensors, pro-
vide situaƟonal awareness by monitoring the area for persons and vehicles. An unmanned aerial
vehicle also provides surveillance and early warning informaƟon by monitoring the periphery of
the denied area. The Silverfish operator controls the obstacles and situaƟonal awareness sensors
remotely froma nearby vehicle that can bemaneuvered to give the operator “eyes-on”monitoring
of the porƟons of the denied area.

The operator has control over the obstacles’ armed or disarmed states and fire capability. He
or she uses the situaƟonal awareness informaƟon available to determine target idenƟty and the
appropriate obstacle with which to engage the target. A wireless network relays the operator’s
commands from the control staƟon to the obstacles. Furthermore, the operator has the ability
to communicate with a command and control center to receive orders and addiƟonal situaƟonal
awareness informaƟon. For the purposes of this thesis, the analysis and recommendaƟons are
limited to the components that are “owned” by the Silverfish system. This means that the com-
mand and control center, the UAV, and the vehicle have their capabiliƟes and inputs to the system
considered when idenƟfying resiliency strategies, but changes to these systems are out of scope
for analysis.

Following the framework described in SecƟon 4.1, the criteria for mission success are simple: all
unauthorized persons or vehicles in the denied area are engaged correctly for the duraƟon of the
mission. Mission failures result from unauthorized persons or vehicles successfully traversing the
denied area or friendly fire incidents.

Following the finalizaƟon of the mission and system descripƟons, the Blue Team and SE teammet
to develop a prioriƟzed list of unacceptable consequences with respect to the Silverfish mission.
The CSRM supplemented this meeƟng with SysML representaƟons of the agreed upon mission
and system descripƟons. Each entry in the list of consequences received a priority based on the
following Likert Scale:

1. Unacceptable and highest priority to provide resiliency

2. Avoid as long as resiliency soluƟon does not over-complicate operaƟon

3. Would like to avoid, but soluƟon needs to be incremental

4. Lowest priority, low-cost, simplisƟc soluƟons should be considered.

Within each prioriƟzaƟon level, the consequences were further ranked based on the Blue Team’s
percepƟon of their severity. For each consequence, the potenƟal targets of an aƩack that would
produce that outcome was idenƟfied, along with the potenƟal method for compleƟng the aƩack.
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Finally, the types of inappropriate control acƟons that would be associated with that consequence
were idenƟfied using the following scale:

1. Providing a control acƟon causes a hazard

2. Not providing a control acƟon causes a hazard

3. Incorrect Ɵming or improper order of control acƟons causes a hazard

4. A control acƟon is applied too long or stopped too soon.

The output of this meeƟng is presented below in Table 6.

Likert
Rank

Consequence AƩack Target(s) AƩack Method Control
AcƟon
Type

1.1 Inappropriate firings via
manipulaƟng operator
commands

Operator control display,
radio comm links

External, supply
chain, insider

1, 2, 3

1.2 Delays in fire Ɵme (sufficient
delay to cross field)

Obstacles, control sta-
Ɵon, radio comm links

External, supply
chain, insider

2, 3

1.3 Delays in deployment Obstacles, deployment
support equipment

Supply chain,
insider

2, 3

1.4 DeacƟvaƟon of a set of ob-
stacles

Obstacles External, insider 1, 3

2.1 Delays in situaƟonal aware-
ness

Operator display, sensors External, insider,
supply chain

1, 2, 3

2.2 Prevent or corrupt transmis-
sion of situaƟonal aware-
ness data

Radio comm links, opera-
tor display, sensors

External, insider,
supply chain

1, 2, 3

2.3 Gain informaƟon to help
adversary navigate through
field

Obstacle, operator con-
trol staƟon

External, insider 2, 3

3.1 Reduced operaƟonal lifes-
pan

Obstacle External, supply
chain, insider

1, 2, 3,

3.2 Prevent transmis-
sion/execuƟon of non-firing
commands

Operator display, obsta-
cles

External, insider,
supply chain

1, 2

4.1 Delays in sending/receiving
C2 informaƟon

Operator display, radio
comm links

External, supply
chain

1, 2, 3

4.1 Delays in un-deployment Obstacles External, insider,
supply chain

1, 2, 3

Table 6: The list of Blue Team-derived undesirable consequences.

The list of unacceptable consequences, along with the Silverfish mission and system descripƟon,
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form the ground truth from which all further analysis is based. Following the compleƟon of this
step, the STRAT does not require further involvement of the system owners (Blue Team) or other
non-SE team members, unlike the CSRM.

5.2.2 SùÝã�ÃÝ-T«�ÊÙ�ã®� CÊÄÝ�Øç�Ä�� AÄ�½ùÝ®Ý

As described in SecƟon 4.1, following the definiƟon of the mission and system descripƟons and
the idenƟficaƟon of undesirable consequences, STRAT uses STAMP and STPA-Sec concepts to doc-
ument unacceptable losses, hazards, and the system’s control structure.

The mission and system descripƟons defined the basic condiƟons for mission success and failure.
Silverfish achieves mission success if no unauthorized agents traverse the denied area for the du-
raƟon of the mission; mission failure occurs when unauthorized agents successfully traverse the
denied area or obstacles are fired upon friendly forces. These two definiƟons translate into the
following unacceptable losses or outcomes for this mission:

• L1 – Enemy forces or other unauthorized persons/vehicles traverse the denied area without
the operator’s knowledge or intent,

• L2 – Friendly forces, civilians, or other non-combatants are killed or harmed by Silverfish,

• L3 – Silverfish obstacles are fired without a valid target.

Unacceptable losses L1 and L2 clearly map to the stated mission of Silverfish; however, L3 was
derived as an addiƟonal, lower priority unacceptable loss because of the implicaƟons it has on
the outcome of the mission. As seen in the outcomes described in Table 6, the Blue Team is con-
cerned about losing control of Silverfish or Silverfish not being able to operate as intended for
the mission’s duraƟon- L3 describes a third end-result of such consequences that does not involve
friendly fire or the immediate traversal of unauthorized agents through the denied area.

Following the definiƟon of the unacceptable losses, the STRAT defines the hazardous condiƟons
that could lead to an unacceptable loss. These hazards define condiƟons that do not immediately
result in an unacceptable loss, but will lead to an unacceptable loss given an improper imple-
mentaƟon of a control acƟon or the presence of a worst-case environment. Table 7 defines a set
of hazardous condiƟons, the worst case environment for those occur in, and the unacceptable
losses associated with that hazard.

Next, the basic control structure of the Silverfish system is defined. Using the control loop format
described in SecƟon 4.1 and Figure 5, Silverfish is decomposed into its main controllers, sensors,
actuators, and controlled processes. Based on the system descripƟon, Silverfish consists of an op-
erator who controls the obstacles and visual sensors through a control staƟon over a wireless
network. This involves the operator overseeing three controlled processes: fire control, surveil-
lance, and target characterizaƟon. The operator manages all three processes through the control
staƟon. The obstacles actuate fire control commands, the visual sensors actuate surveillance and
target characterizaƟon, and the characterizaƟon sensors (acousƟc and seismic) also enable target
characterizaƟon. The sensors provide feedback to the operator on the three controlled processes
via the control staƟon. This basic structure is presented in Figure 20. It should be noted that the
simplicity of this parƟcular system is not necessarily shared by other systems.
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Hazard Worst Case Environment Associated Losses

H1- Failure to fire correct ob-
stacle

Imminent threat entering de-
nied area

L1

H2- Incorrect obstacle armed
or fired

Friendly in denied area L1, L2, L3

H3- Wireless link to obstacles
down

Imminent threat in denied
area

L1

H4- SituaƟonal Awareness
data inaccurate, delayed, or
unavailable

Imminent threat entering de-
nied area; friendly agent in
denied area

L1, L2

Table 7: Hazardous CondiƟons that could lead to an unacceptable loss.

Figure 20: The basic control structure of Silverfish.

From this control structure, the control acƟons available at each hierarchical level are enumer-
ated, and the condiƟons under which each control acƟon contributes to a hazard idenƟfied. In
the representaƟon of the system described in Figure 20, the control acƟons available to operator
are effecƟvely idenƟcal to those available to the corresponding lower levels of the system. Conse-
quently, those control acƟons for the other hierarchical levels of the system are omiƩed from the
control acƟons in Table 8 as they would be redundant. Again, this characterisƟc is a result of the
simple nature of the Silverfish system, and not indicaƟve of other applicaƟons. Understandably,
however, if the lower level controllers do not enact the operator’s control acƟons accurately, then
hazards are likely to occur.

The final step of the consequence analysis involves the generaƟonof causal scenarios that describe
the implementaƟon of improper control acƟons. The undesirable outcomes defined by the Blue
TeammoƟvate the definiƟon of causal scenarios associated with each control acƟon. These causal
scenarios helpmoƟvate the choice of appropriate resiliencymeasures in the next step by providing
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Control AcƟon Not Providing
causes hazard

Providing
Causes hazard

Incorrect Tim-
ing or Order

Stopped too
soon or applied
too long

Operator Control AcƟons
CA 1.1-
Arm/Disarm
Obstacle

Target in denied
area- H1, H3

Friendly in de-
nied area- H2

Target not in
range- H1

Target not in
range- H1

CA 1.2- Fire Ob-
stacle

Target in range-
H1, H3

Friendly in
range- H2

Target not in
range- H1

Target not in
range- H1

CA 1.3- Adjust
visual sensor
field of view

Target not
idenƟfied- H1,
H3, H4

Target goes
unidenƟfied-
H1, H4

Target
unidenƟfied-
H1, H4

Target goes
unidenƟfied-
H1, H4

Obstacle/Sensor Control AcƟons

CA 2.1- Send
feedback

Operator
doesn’t receive
data- H1, H3, H4

Data is
corrupted-
H1, H2, H4

N/a Target goes
unengaged- H1

Table 8: Control acƟons and the condiƟons under which they would contribute to a hazard.

details on what might cause a control acƟon to be implemented improperly. Table 9 presents
control acƟons mapped with an associated causal scenario and the priority rank of the related
undesirable outcome(s) from the Blue Team.

Control AcƟon Causal Scenario Blue Team Outcome

CA 1.1 LegiƟmate operator control acƟon overrid-
den or altered due to cyber-aƩack on con-
trol staƟon or network

1.1, 1.2, 1.4,

CA 1.2 LegiƟmate operator control acƟon given,
but improper due tomisclassificaƟon of tar-
get

2.1, 2.2, 3.2, 4.1

CA 1.3 LegiƟmate control acƟon overridden or al-
tered due to cyber-aƩack

2.1, 2.2, 2.3, 3.2

CA 2.1 Cyber-aƩack causes delay, denial, or in-
creased rate of control acƟon applicaƟon

2.1, 3.1, 3.2

Table 9: Causal scenarios for implemenƟng an improper control acƟon mapped to undesirable
Blue Team outcomes.

5.2.3 MÊ��½-��Ý�� R�Ý®½®�Ä�� SÊ½çã®ÊÄ I��Äã®¥®��ã®ÊÄ

Model ConstrucƟon

The next step in the STRAT beginswith the development of the graphical systemmodel. Thismodel
shares the same basic shape as the hierarchical control structure idenƟfied in the consequence
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analysis, but incorporates addiƟonal STAMP-related informaƟon. Using the definiƟons outlined in
SecƟon 4.1, the Sim-graph for the Silverfish system is presented in Figure 21. Each vertex and edge
is color-coded to the types described previously.

The verƟces labelled 1, 2, 3, 5, and 7 map directly to their corresponding blocks in the control
structure shown in Figure 20. The verƟces labelled 4 and 6 represent the physical states that define
the presence or absence of an unacceptable loss. The obstacle state describes whether or not
the obstacles are armed and whether or not an obstacle has been fired. Likewise, the denied
area state describes any agents within the denied area and their locaƟon. The vertex labelled
8 represents the outcome matrix, which describes the presence or absence of an unacceptable
loss. The edges labelled a, b, c, h, and i are the acƟon edges, which describe the control acƟons
or dynamics through which the parent vertex influences the target vertex. The edges labelled d,
e, f, g, k, and l represent feedback from the parent vertex to the target vertex. Finally, the edges
m and n represent the condiƟonal edges that are the inputs to the outcome matrix.

Figure 21: The Sim-graph for the Silverfish System.

As stated previously, at this point of development, the Sim-graph mainly serves as the foundaƟon
for the Simulink behavior model. Future research on the mathemaƟcs of the Sim-graph formula-
Ɵon could allow for further analysis on the system’s control structure.

The Simulinkmodel follows the construcƟon guidelines defined in Table 4. For the purposes of this
parƟcular system, however, the operator and control staƟon are represented as a single enƟty.
This is because the control staƟon and the operator follow the same decision logic, thus mak-
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ing separate model representaƟons superfluous. A screenshot of the Simulink model is shown in
Figure 22.

Figure 22: A screenshot of the Simulink behavior model.

The Simulink model follows the scenario-based formulaƟon described in SecƟon 4.1. That is, the
state variables not controlled by the system, agent idenƟty and proximity to an obstacle are de-
fined as source inputs to the simulaƟon. For the purposes of this applicaƟon, agent idenƟty is
defined as a constant and proximity decreases linearly from an iniƟal with Ɵme. These variables
are the inputs to a state machine diagram that defines the “true” state of the denied area based
on the values of the source variables. This “true” state of the denied area is defined as one of the
following states in the state machine diagram (combinaƟons of these states are not considered as
the operaƟon of Silverfish in such situaƟons becomes dependent on the operator’s specific rules
of engagement):

1. No agent present in the denied area

2. A non-enemy agent in the denied area, but out of range of an obstacle

3. An enemy agent in the denied area, but out of range of an obstacle

4. A non-enemy agent in the denied area, and in of range of an obstacle

5. An enemy agent in the denied area, and in of range of an obstacle.

The state of the denied area is monitored by the surveillance and target characterizaƟon sen-
sors, which introduces noise into the esƟmate of the state of the denied area. This esƟmaƟon is
represented by another state machine diagram with the same states defined above, however, the
inputs are combinedwith Simulink noise blocks. The esƟmate of the state of the denied area forms
the input to the operator’s decision model regarding which control acƟons to take. This decision
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model is encoded in a truth table that maps the esƟmated denied area states to an appropriate
control acƟon. This truth table is presented below in Table 10.

CondiƟon D1 D2 D3

Agent Present in Denied Area T T -
Confirmed Enemy Agent T T -
Agent in Range of Obstacle T F -
Control AcƟon Fire Arm Disarm

Table 10: A truth table representaƟon of operator decision logic.

The resulƟng control acƟon of the truth table then forms the input to the state machine diagram
that represents the state of the obstacle. Each obstacle can be armed, disarmed, or fired. The state
of the obstacle is then combined with the “true” state of the denied area to form the inputs to the
outcomematrix. The outcomematrix is also defined as a truth table, mapping in Sim-graph states
to consequence analysis losses and hazards, seen below in Table 11.

CondiƟon D1 D2 D3 D4 D5 D6 D7 D8 D9

Agent Present in Denied Area T T T T T T F F -
Confirmed Enemy Agent T T T T F F F F -
Agent in Range of Obstacle T T T F T T F F -
Obstacle Armed T T F F T T T T -
Obstacle Fired T F F F T F T F -
Outcome n/a L1 H1 H1 L2 H2 L3 H2 n/a

Table 11: A truth table descripƟon of the outcome matrix.

Running the simulaƟon in its baseline configuraƟon always results in the “n/a” outcome defined in
Table 11, which indicates that the system is operaƟng as intended given a parƟcular set of starƟng
condiƟons.

IdenƟfying Resiliency SoluƟons from SimulaƟon Changes

As described in SecƟon 4.1, changes to the simulaƟon intended to create the hazardous condi-
Ɵons and unacceptable losses from the consequence analysis idenƟfy the locaƟons for potenƟal
resilience soluƟons. For this parƟcular system, the first approach to producing adverse outcomes-
introducing hazardous starƟng condiƟons for the simulaƟon does not apply. Since the sources
variables describe the agent idenƟty and proximity, the only possible hazardous starƟng condiƟon
would be an enemy agent in range of an obstacle. As stated in the previous secƟon, the system’s
decision logic would immediately resolve the situaƟon.

The second approach to producing adverse outcomes in the simulaƟon, however, yields mean-
ingful results. The causal scenarios idenƟfied in the consequence analysis and defined in Table V
describe potenƟal ways that improper control acƟons can lead to adverse outcomes. These causal
scenarios can be categorized into three types of root causes:
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1. LegiƟmate control acƟons made based on erroneous decisions

2. LegiƟmate control acƟons overridden by invalid control acƟons

3. Control acƟons blocked or delayed in implementaƟon.

Using these three types of root causes as a basis for design, changes are made to the simulaƟon
with the intent of producing the hazardous condiƟons defined by the consequence analysis.

For example, adding bias to the esƟmate of an enemy agent’s proximity to a parƟcular obstacle
can result in the failure to fire the correct obstacle- H1. Depending on the geometry of the denied
area, as liƩle as a 10% bias to the proximity esƟmate can result in the firing of an incorrect obstacle
(assuming that the obstacles have a 50 meter range and the range of adjacent obstacles overlap
by 5 meters). Following this example, each hazardous condiƟon from the consequence analysis is
mapped to a list of changes in the simulaƟon that produce the outcome and their corresponding
locaƟons in the system in Table 12.

Outcome Changes to SimulaƟon to Produce Outcome LocaƟon

NegaƟve bias or increased noise in idenƟty esƟ-
mate

Visual sensors, classifi-
caƟon algorithms (if ap-
plicable)

10% bias in proximity esƟmate (under right condi-
Ɵons)

CharacterizaƟon sen-
sors, control staƟon log
of obstacle locaƟons

Confusion of control acƟons between operator in-
put and obstacle implementaƟon

Control staƟon, obsta-
cle

Incorrect reporƟng of obstacle state Control staƟon, obsta-
cle

H1

No control input to obstacles Control staƟon, net-
work

PosiƟve bias or increased noise in idenƟty esƟmate Visual sensors, classifi-
caƟon algorithms (if ap-
plicable)

H2
Confusion of control acƟons between operator in-
put and obstacle implementaƟon

Control staƟon, obsta-
cle

H3 No control input to obstacles Control staƟon network
H4 Increased noise or bias added to idenƟty and prox-

imity esƟmates
Sensors, classifica-
Ɵon algorithms (if
applicable)

Table 12: A mapping of simulaƟon changes to the hazardous condiƟons they contribute to.

The combinaƟon of the type of change made to the simulaƟon and the corresponding locaƟon
within the Silverfish system drive the selecƟon of resiliency soluƟons that would miƟgate the haz-
ardous condiƟon mapped to the change. For example, a resiliency strategy that would address
the lack of control input to the obstacles associated with the network would be the inclusion of
a backup communicaƟon system to control the obstacles. Whereas a strategy that addresses the
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same change to the simulaƟon, but a different locaƟon within the system, would be the inclusion
of diverse hardware components within the control staƟon that rotate responsibility for sending
commands to the obstacle over the network. Following this paƩern, resiliency soluƟons are iden-
Ɵfied for each of the remaining simulaƟon changes and corresponding locaƟons in Table 13.

Change to SimulaƟon LocaƟon Resiliency SoluƟon

Visual sensors Redundant camera system
with lesser performanceBias or increased noise in

idenƟty esƟmate ClassificaƟon algorithms (if
applicable)

System parameter assurance

CharacterizaƟon sensors Triple redundant acousƟc sen-
sors for increased confidence
in proximity measurement10% bias in proximity

esƟmate (under right
condiƟons)

Control staƟon based log of
obstacle locaƟons

System parameter assurance

Confusion of control acƟons
between operator input and
obstacle implementaƟon

Control staƟon Diversely redundant, hopping
command sending capability

Obstacle Two-factor command autho-
rizaƟon

Control staƟon System parameter assuranceIncorrect reporƟng of
obstacle state Obstacle OperaƟonal consistency

checking for obstacle feed-
back

Control staƟon Diversely redundant, hopping
command sending capability

No control input to obstacles
Network Backup communicaƟon net-

work

Table 13: PotenƟal Resilience SoluƟons mapped to simulaƟon changes.

The list of potenƟal resiliency soluƟons is now consolidated into amapping of each soluƟon to the
locaƟons for implementaƟon, the hazardous condiƟon(s) to be miƟgated, and the associated Blue
Team adverse outcomes. This mapping is shown in Table 14.

5.2.4 Eò�½ç�ã®ÊÄ Ê¥ I��Äã®¥®�� R�Ý®½®�Ä�ù SÊ½çã®ÊÄÝ

Given the set of resiliency soluƟons idenƟfied in the previous step, each soluƟon is now evaluated
in terms of the risk-based framework described in SecƟon 4.1. The impact of each soluƟon is a
factor based on the number of adverse outcomes addressed, the priority of those adverse out-
comes, and the soluƟon’s effect on system operaƟon. The priority of outcomes is defined as the
average likert priority ranking of the associated Blue Team adverse outcomes. As stated in SecƟon
4.1, some resiliency soluƟons may be possible to represent in the simulaƟon. For this parƟcu-
lar applicaƟon, the only soluƟon soluƟons immediately representable within the simulaƟon are
the ones addressing increased noise or bias within the system’s sensors. For example, the triple-
redundant acousƟc sensors lowers the amount of noise perceived by the system, and allows for a
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Resiliency SoluƟon LocaƟon MiƟgated Haz-
ard(s)

Associated Blue
Team Outcomes

Redundant camera sys-
tem with lesser perfor-
mance

Visual sensors H1, H2, H4 1.2, 2.1, 2.2

System parameter as-
surance

Control staƟon, control
staƟon based log of ob-
stacles, classificaƟon al-
gorithms

H1, H2, H3, H4 1.2, 2.1, 2.2

Triple redundant acous-
Ɵc sensors for increased
confidence in proximity
measurement

CharacterizaƟon sen-
sors

H1, H4 1.2, 2.1, 2.2

Diversely redundant,
hopping command
sending capability

Control staƟon H1, H2, H3 1.1, 1.2, 1.4, 3.2

Two-factor command
authorizaƟon

Obstacle H1, H2 1.1, 1.4

OperaƟonal consis-
tency checking for
obstacle feedback

Obstacle H1 1.4, 3.1

Backup communicaƟon
network

Network H1, H3 1.2, 2.1, 2.2, 3.2

Table 14: Resilience soluƟons mapped to their locaƟons for implementaƟon and miƟgated haz-
ardous condiƟons.

sensor giving badmeasurements to be voted out. However, despite this soluƟon’s apparent effect
on the accuracy of proximity measurements, the operaƟon of Silverfish is not majorly affected by
an increase in precision from its acousƟc sensors.

Silverfish relies heavily on the visual surveillance from the cameras monitoring the denied area.
Furthermore, the operator uses his or her own judgment for target idenƟficaƟonand characterizaƟon–
which is in itself an effecƟve resiliencymeasure. The ability of the operator tomaneuverwithin the
denied area to make “eyes-on” assessments of agents within the denied area reduces the impact
of increasing noise or bias to the sensors used for surveillance. However, it should be noted that,
in the feasible near-future scenario where target idenƟficaƟon and classificaƟon is automated,
the impact of soluƟons that miƟgate the introducƟon of noise or bias to the system’s sensors in-
creases significantly. Table 15 presents an overall impact raƟng for each resiliency soluƟon based
on the three factors menƟoned above along with a raƟonale for the raƟng of the soluƟon’s effect
on the system.

Following the classificaƟon of each resiliency soluƟon’s impact, the likelihood of each soluƟon’s
outcomes to bemiƟgated is assessed. This likelihoodmeasure is based on the number and severity
of the changes made to the behavior simulaƟon to achieve adverse outcomes. Table 16 presents
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SoluƟon # of outcomes
addressed

Priority of out-
comes

SoluƟon Effect Overall Impact
raƟng

Redundant cam-
era system with
lesser perfor-
mance

3 1.67 Effect diminished due
to ability of operator
to visually confirm

Medium

System parame-
ter assurance

4 1.67 Confidence in ac-
curacy of state esƟ-
maƟons increased,
changes easily de-
tected

High

Triple redundant
acousƟc sensors
for increased
confidence in
proximity mea-
surement

2 1.67 Minimal effect due to
ability of operator to
visually confirm

Low

Diversely redun-
dant, hopping
command send-
ing capability

3 2 Assurance that com-
mands are not altered
within the control sta-
Ɵon is enhanced

High

Two-factor
command autho-
rizaƟon

2 1 Assurance that obsta-
cles only perform le-
giƟmate commands is
enhanced

Medium

OperaƟonal con-
sistency checking
for obstacle feed-
back

1 2 Assurance that obsta-
cle is reporƟng the
correct feedback en-
hanced

Low

Backup communi-
caƟon network

2 2 Backup network
allows mission to
conƟnue if primary
network goes down,
huge impact on ability
to complete mission

High

Table 15: Impact raƟngs for idenƟfied resiliency soluƟons.

each resiliency soluƟon mapped to these two factors.

Now that each soluƟon’s impact and likelihood raƟngs have been recorded, each soluƟon can be
classified into a “risk” prioriƟzaƟon category as described in SecƟon 4.1. Table 17 presents each
resiliency soluƟon’s impact and likelihood raƟngs along with its prioriƟzaƟon category.

Figure 23 presents this same informaƟon in the risk matrix figure from SecƟon 4.1

Report No. SERC-2019-TR-002

53

Date February 22, 2019



SoluƟon # of changes to
achieve adverse
outcome

Severity of changes Overall Likeli-
hood RaƟng

Redundant camera system
with lesser performance

2 Low- difficult to achieve
needed amount of noise or
bias to affect behavior

Low

System parameter assurance 3 High- simple changes drasƟ-
cally affect system behavior

Medium

Triple redundant acousƟc sen-
sors for increased confidence
in proximity measurement

2 Low- difficult to achieve
needed amount of noise or
bias to affect behavior

Low

Diversely redundant, hopping
command sending capability

3 Medium- simple changes to
affect system behavior, but
difficult to achieve

Medium

Two-factor command autho-
rizaƟon

1 Medium- simple changes to
affect system behavior, but
difficult to achieve

High

OperaƟonal consistency
checking for obstacle feed-
back

1 Medium- simple changes to
affect system behavior, but
difficult to achieve

High

Backup communicaƟon net-
work

1 High- simple changes drasƟ-
cally affect system behavior

High

Table 16: Likelihood raƟngs for idenƟfied resiliency soluƟons.

As seen in the above table and figure, the STRAT idenƟfied a total of seven resilience strategies
appropriate for the Silverfish system. Of these seven, four are recommended to receive high prior-
ity for consideraƟon for implementaƟon, one for medium priority, and the remaining two should
receive low priority. The low priority strategies, triple redundant acousƟc sensors and a backup
camera system, received a low ranking due to the nature of the Silverfish system. Since Silverfish
uses a human-in-the-loop for idenƟfying agents within the denied area and determining which
obstacle to fire (in the event that the agent is an enemy), the likelihood that noise or bias in the
sensor feedback causes incorrect behavior is minimal. In the event that the operator is unable to
idenƟfy a target using the sensors, he or she will likely resort to visual confirmaƟon, which makes
the system resilient against friendly fire incidents at the slight risk of enemy agents traversing the
denied area before they can be posiƟvely idenƟfied and engaged.

Themedium-priority soluƟon, operaƟonal consistency checking for obstacle feedback, received its
ranking due to the ease with which adverse outcomes could be achieved by altering the system’s
percepƟon of the obstacles states. More specifically, the concern behind this resiliency soluƟon
involves the breakdown of mission funcƟon if the system believes that an obstacle has been fired
when it has not. Such a scenario could enable an adversary to traverse the denied area unimpeded
if there were a pathway created by obstacles thought to have been fired.

The high-priority soluƟons labelled D and E in Table 17 involve measures to ensure that the com-
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SoluƟon Impact RaƟng Likelihood
RaƟng

PrioriƟzaƟon
Category

A. Redundant camera system
with lesser performance

Medium Low Low

B. System parameter assurance High Medium High
C. Triple redundant acousƟc sen-

sors for increased confidence
in proximity measurement

Low Low Low

D. Diversely redundant, hopping
command sending capability

High Medium High

E. Two-factor command autho-
rizaƟon

Medium High High

F. OperaƟonal consistency
checking for obstacle feed-
back

Low High Medium

G. Backup communicaƟon net-
work

High High High

Table 17: Resilience soluƟons classified in their prioriƟzaƟon categories.

Impact
Low Medium High

Li
ke
lih

oo
d High F E G

Medium B,D

Low C A

Priority

High

Medium

Low

Figure 23: Resilience soluƟons mapped to their posiƟon in the risk matrix.

mands sent by a system component match the commands received by the intended recipient. It is
clear how such mis-matches would result in unintended behavior. The soluƟon labelled B in Table
17 involves ensuring that changes to the algorithms, decision models, or other parameters are
detected and accounted for before any system processes are adversely affected.

Finally, the highest priority soluƟon for consideraƟon for implementaƟon is the introducƟon of a
backup communicaƟon network. Without a working network, the Silverfish system cannot com-
plete its mission.

5.2.5 CÊÃÖ�Ù®ÝÊÄ ãÊ CSRM R�Ýç½ãÝ

Comparing the results of the CSRM to the STRAT must first be qualified by the difference in goals
between the two methodologies. First and foremost, the CSRM intends to develop cyber security
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requirements for a developing system. Such requirements include the incorporaƟon of both re-
silience and tradiƟonal security soluƟons into the system design. STRAT, on the other hand focuses
solely on the idenƟficaƟon and evaluaƟon of resiliency strategies. Consequently, the comparison
of results between the two methodologies will be limited to the CSRM’s recommendaƟons for
resiliency. Secondly, the CSRM leverages domain experts throughout the process, which provides
excellent credibility in its results, but limits its applicability in pracƟce due to scheduling and bud-
get constraints. STRAT uƟlizes domain experts to a lesser degree in the hope that model-based
evidence can provide a similar level of credibility.

The potenƟal resilience strategies idenƟfied by the CSRM included resilient weapon control ca-
pabiliƟes, diverse communicaƟons sub-systems, and resilient situaƟonal awareness capabiliƟes.
Based on the inputs from the Blue and Red Teams, the CSRM idenƟfied the system’s communi-
caƟon subsystems (network) as the top priority area for resiliency. The resilient weapon control
and situaƟonal awareness capabiliƟes incorporated a variety of soluƟons such as diverse redun-
dancy, confidence tesƟng, and situaƟonal awareness introspecƟon. The STRAT also idenƟfied the
network as the top priority for resiliency, and specified that resiliency should be achieved through
redundancy. The other resiliency strategies however, can be classified as sub-strategies of the
weapon control and situaƟonal awareness categories idenƟfied in the CSRM.

In general, CSRM idenƟfied a broader selecƟon of resiliency strategies than the STRAT. This could
be a result of the abstracƟon of system hardware components in STRAT’s definiƟon of the control
structure and systemmodel. CSRMdefined the existence hardware components explicitly in SysML
representaƟons, which likely aided the idenƟficaƟon of resiliency strategies such as separaƟng
situaƟonal awareness informaƟon from weapon control funcƟons.

The similarity of the top priority recommendaƟons in the CSRM and STRAT suggests that STRAT is
compaƟble with exisƟngmethodologies. Since STRAT does not involve as many domain experts as
the CSRM, the STRAT could be a viable alternaƟve technique for recommending a prioriƟzed set
of resiliency strategies. Both methodologies, however, are limited in that neither account for the
cost of resiliency.

5.3 AÖÖ½®��ã®ÊÄ Ê¥ CYBOK Ι S��çÙ®ãù AÄ�½ùÝã D�Ý«�Ê�Ù�

We use the SysML models presented above with some extra design informaƟon added through
the dashboard. This extra design informaƟon assists CYBOK to find applicable aƩack vectors. We
note that a systems engineering analysis is already conducted and, therefore, it is not necessary
to transfer the results to the dashboard. For these results we take the previous secƟon as input to
the aƩack vector analysis.

CYBOK and especially its UI consist of a useful tool to invesƟgate and explore the aƩack vector
space associated with a given system topology. This is because of their interacƟve nature between
vulnerability data and the model, which is not present in the SysML framwork.

The evidence produced by the tools present in this report are also supported by previous efforts
in the same realm [3]. Specifically, in the previous exercise stakeholders, blue teammembers, and
red teammembers evaluated silverfish for criƟcal subsystems and potenƟal resilience or defensive
soluƟons that might be applied before the system is deployed. The aƩack vector analysis supports
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Figure 24: The aƩack surface of silverfish.

those findings by producing real aƩack informaƟon that could further provide assurance that the
system is secure up to its operaƟonal needs.

Moreover, while this tool does not eradicate the need for consulƟng security professionals, it does
allow for system designers to be beƩer informed about potenƟal aƩack vectors that should be dis-
cussed during those consultaƟons. At the same, it provides an equal framework for both security
analysts and systems engineers to discuss within the same language or framework and, therefore,
it bridges the grap between the two.

5.3.1 Aãã��» SçÙ¥���

The first thing we look at is the automaƟcally produced aƩack surface. This aƩack surface is con-
structed by looking at the Entry Point aƩribute in the model. If an aƩack vector is associated with
the keywords in this specific aƩribute then the element; that is, vertex, becomes part of the at-
tack surface. That means, that this element is very likely accessible externally by an aƩacker and
if violated can be the reason for further spread—through other aƩack vectors—within the system
topology.

Specific to silverfish we idenƟfied the following elements are part of the aƩack surface: UAV In-
terface, Operator Control StaƟon, C2 Interface, Network Radio Relay. The violated aƩributes as-
sociated with these components are shown in red and are: Wi-Fi, Wi-Fi mesh wireless network,
Intercept and Spoof (Figure 24). It is apparent, that all those elements are the communicaƟon
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Table 18: A fragment of the results produced by CYBOK and picked by the security analyst through
the Security Analyst Dashboard.

Network Radio Relay
CAPEC-158 Sniffing Network Traffic
CWE-311 Missing EncrypƟon of SensisƟve Data
CWE-319 Cleartext Transmission of SensiƟve InformaƟon

Operator Control StaƟon
CAPEC-10 Buffer Overflow via Environment Variables
CWE-120 Buffer Copy without Checking Size of input (’Classic Buffer Overflow’)
CWE-231 Improper Handling of Extra Values
CWE-993 SFP Secondary Cluster: Incorrect Input Handling

UAV Interface
CAPEC-604 Wi-Fi Jamming
CAPEC-202 Create Malicious Client
CWE-602 Client-Side Enforcement of Server-Side Security
CWE-254 7PK - Security Features

C2 Interface
CWE-311 Missing EncrypƟon of SensisƟve Data
CWE-319 Cleartext Transmission of SensiƟve InformaƟon

Infrared IR Camera
CAPEC-13 SubverƟng Environment Variable Values
CWE-15 External Control of System or ConfiguraƟon Seƫng

CWE-994 SFP Secondary Cluster: Tainted input to variable

devices between subsystems.

5.3.2 R�½�ò�Äã Aãã��» V��ãÊÙÝ

To further understand how exploits can cause system funcƟon violaƟons it is necessary to examine
the aƩack vector space of the system topology; that is, the aƩacks produced by CYBOK to be
relevant to it. To do so a security analyst has to filter through the aƩacks and examine which ones
are: (1) truly applicable to the system, (2) have a high likelihood of being used against the system,
and (3) be successful in violaƟng subsystem funcƟons.

The subset of aƩack vectors filtered by a security analyst using the Security Analyst Dashboard
is significantly lower than the starƟng set (i.e., CAPEC, CWE, CVE) but also from the CYBOK set.
CYBOK acts as the first filter, finding only relevant aƩack vectors from the databases based on the
systemmodel. Then, a further circumspecƟon from a security analyst is necessary to find the truly
applicable but also important aƩacks. The process is semiautomaƟc in that way.

The security analyst picks those results by using extra aƩributes of each component and using
the automaƟcally produced aƩack surface as an iniƟal point of analysis. The individual aƩacks
are found by using the tree view pane’s filter funcƟon by component name or other informa-
Ɵon present in the datasets or the model. For example, the C2 Interface included the aƩribute
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Figure 25: The projected aƩacks over the system topology, the set of aƩack vectors picked by the
security analyst in graph form, and the bucket containing the same aƩack vectors in textual form.

communication_node: cleartext which suggests that the security analyst should look for at-
tacks related to cleartext or encrypƟon. UAV Interface is part of the aƩack surface because it used
Wi-Fi and aƩacks on Wi-Fi are possible. Finding those aƩacks is important to inform about what
defenses or miƟgaƟons. Infrared IR Camera is a device that the security analyst knows that it uses
external environment input data, so I searched for aƩacks related to that. The resulƟng set of at-
tack vectors is only the crucial set that the security analyst reports to the rest of the stakeholders
(Table 18). Another view of this smaller set can be to project it over the system topology, which
further informs at the criƟcal subsystems of the whole system (Figure 25).

Because all aƩack surface elements are part of the communicaƟons network the aƩack vector
analysis agrees with the CSRM and STRAT analyses presented in previous secƟons. AddiƟonal to
those results, however, the aƩack vector analysis reveals the potenƟal for further spread within
the system in the event that those aƩack surfaces are accessed by an aƩacker; that is, in the event
that the resilience soluƟons are insufficient. In that case, further barriers might be necessary—
based on the stakeholders’s needs—within the system structure itself. The specific aƩack vectors
reported by CYBOK and the Security Analyst Dashboard can guide such defense strategies.
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6 CÊÄ�½çÝ®ÊÄÝ �Ä� PÊã�Äã®�½ FçãçÙ� R�Ý��Ù�« D®Ù��ã®ÊÄÝ

Outcomes this year include developing a deeper understanding of open source databases of his-
torical cyber aƩacks (e.g., CAPEC, CWE, CERT, and CVE), as well as defining and developing SysML
modeling constructs and a traceability ontology to effecƟvely capture relaƟons between missions
and system, components in the presence of aƩack paƩerns. Key accomplishments for this phase
include: (1) development of the STRAT toolset to support CSRM and dynamic assessment of aƩack
consequence, (2) use of several different NLP/querying techniques to characterize relaƟonships
between aƩack classes in CAPEC, CWE, and CVE; (3) development of the Security Analyst Dash-
board. The dashboard presents an interacƟve view of both the “System” and the “AƩack Space”
and allows for several different levels of automaƟon as well as human/analyst interacƟon. Each
of the tools is published as a binary and/or executable. The Dashboard is designed to work within
CYBOK (though CYBOKmay be used independently of the dashboard); for example, the dashboard
uses the automated recommender system that underpins CYBOK to provide analysts with the ca-
pability to directly query specific entries in CAPEC, CVE, and CWE.

For future research efforts, consideraƟon should be placed on how to accelerate the transiƟon of
research results into pracƟce. The recommended path for such a transiƟonwould be to engage in a
case study that features collaboraƟon with one or more tool vendors as a basis for addressing the
technical issues related to the integraƟon of the newly derived tools with exisƟng SysML-based
MBSE tool sets. This case study approach to acceleraƟng transiƟon into pracƟce would require
selecƟon of a toolset for iniƟal evaluaƟons.

Currently CYBOK is engineered to employ MITRE CorporaƟon’s CAPEC and associated databases.
Future efforts might focus on the idenƟficaƟon of addiƟonal data requirements that would en-
hance support for evolving cyber resilience risk assessments. The moƟvaƟon for such an effort is
the expectaƟon that future cyber aƩacks will increase the need to address cyber-physical system
features and system-of-system integraƟon features, thereby requiring different sets of informa-
Ɵon and associated schema than are employed in the current MITRE data sets. AddiƟonally, there
is a need for a risk scoring system that combines the likelihoods fromCYBOKwith systems behavior
derived from the dynamic, finite-state analyses from STRAT, with the promise that higher fidelity
assessments of cyber aƩack consequences (based on system behavior rather than structure), and
consequently improved risk analyses, could be produced.
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